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PREFACE

The purpose of this text is to provide an introduction to the
techniques of data reduction and error analysis commonly
employed by individuals doing research in the physical sciences
and to present them in sufficient detail and breadth to make them
useful for students throughout their undergraduate and graduate
studies. The presentation is developed from a practical point of
view, including enough derivation to justify the results, but
emphasizing the methods more than the theory.

The level of primary concern is that of junior and senior
undergraduate laboratory where a thorough study of these
techniques is most appropriate. The treatment is intended to be
comprehensive enough to be suitable for use by graduate students
in experimental research who would benefit from the generalized
methods for linear and non-linear least-squares fitting and from
the summaries of definitions and techniques.

At the same time, the introduction to the material is made
self-supporting in that no prior knowledge of the methods of
statistical evaluation is assumed; the material of each section is
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developed from first principles. A discussion of differential
calculus and manipulation of matrices and determinants is
included in the appendixes to supplement their use in the text.

The emphasis, however, is toward the application of more
general techniques than are usually presented in undergraduate
laboratories. With the proliferation of computers and their use in
research laboratories, it is important that sophisticated concepts
of data reduction be introduced. Computer routines written
explicitly for each section are used throughout to illustrate in a
practical way both the concepts and the procedures discussed.

The first five chapters introduce the concepts of errors,
uncertainties, probability distributions, and methods of optimiz-
ing the estimates of parameters characterizing observations of a
single variable. Chapters 6 to 9 deal with the problem of fitting,
analytically, complex functions to observations of more than one
variable, including estimates of the resulting uncertainties and
tests for optimizing the functional form of the fit. The last third
of the text contains a description of techniques for searching for
the best fit to data with arbitrary functions. Techniques for
manipulating data or extracting information without fitting are
also discussed.

Computer programs The primary purpose of the com-
puter routines is to clarify the presentation, but they are meant
to be usable for calculations as well. They are written as sub-
routines and function subprograms to provide flexibility for the
user in applying them to his own data. The format of the routines
is similar to that of the IBM Scientific Subroutine Package for
the IBM 360 computer system, including considerable com-
mentary to define the parameters used and to describe the flow of
the routine.

The routines are written in Fortran IV, but they are com-
patible with Fortran II except for the use of double precision
and missing suffixes in the names of library functions, which are
noted in the program descriptions. The sizes of most of the arrays
are to be specified by the user and they are dimensioned in the
routines with a size of 1. For most versions of Fortran, the dimen-
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sion size in a subprogram is a dummy argument for one-dimen-
sional arrays and need not correspond to the actual size used.
Two-dimensional arrays are always dimensioned explicitly; these
arrays and those which are wholly contained within the routines
are assigned dimensions such that the routines can handle up to
10 terms of a fitting function and up to 100 data points. These
dimensions may be increased for larger input dimensions or
decreased for more efficient use of memory. All input and output
variables are specified as arguments of the calling statement.

These routines have been debugged in both Fortran IV and
Fortran IT versions on small and large computers. They are
intended to be usable operating routines and are reasonably
efficient. Their most important function, however, is to serve as a
framework on which to build and modify routines to serve the
specific needs of the user.
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CHAPTER ONE

SYSTEMATIC AND
RANDOM ERRORS

1-1 ERRORS

It is a well-established rule of scientific investigation that the
first time an experiment is performed the results bear all too little
resemblance to the “truth” being sought. As the experiment is
repeated, with successive refinements of technique and method,
the results gradually and asymptotically approach what we may
accept with some confidence to be a reliable description of events.
Some investigators have gone so far as to assert that nature is
loath to give up her secrets without a considerable expenditure of
effort on our part, and that it is a fundamental fact of life that
first steps in experimentation are bound to fail. Whatever the
reason, it is certainly true that for all physical experiments, errors
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and uncertainties exist which must be reduced by improvements
in techniques and ideas and then estimated to establish the
validity of results.

Error is defined by Webster as ‘“the difference between a
calculated or observed value and the true value.” Usually, of
course, we do not know what the “true’’ value is or there would be
no reason for performing the experiment. But we often do know
approximately what it should be, either from earlier experimenta-
tion along the same line or from other theoretical or experimental
approaches. Such approximations can yield an indication of
whether our result is of the right order of magnitude, but we also
need some systematic way to determine from the data themselves
how much confidence we can have in our experimental results.

There is one class of errors which we can deal with immedi-
ately: that which originates from mistakes or blunders in com-
putation or measurement. Fortunately, these sources of error are
usually apparent either as obviously incorrect data points or as
results which are not reasonably close to the expected results.
They are classified as llegitimate errors which can be corrected by
performing the erroneous operations again correctly.

Systematic errors There is another class of errors which
is not so easy to detect and for which statistical analysis is not
generally useful. This is the class of systematic errors, such as those
which result reproducibly from faulty calibration of equipment or
from bias on the part of the observer. These errors must be esti-
mated from an analysis of the experimental conditions and
techniques. In some cases, corrections can be made to the data to
compensate for systematic errors where the type and extent of the
error is known. In other cases, the uncertainties resulting from
these errors must be estimated and combined with uncertainties
from statistical fluctuations.

EXAMPLE 1-1 A student measures a table top with a steel
meter stick and finds that the average of his measurements yields
a result of 1.982 m for the length of the table. He subsequently
learns that the meter stick was calibrated at 25°C and has an
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expansion coefficient of .0005/°C. Since his measurements were
made at a temperature of 20°C, he multiplies his results by
1 — 5(.0005) = 0.9975 so that his new determination of the
length is 1.977 m.

When the same student repeats the experiment, he discovers
that his technique for reading the meter stick was faulty in that
he did not always read the divisions from directly above. By
experimentation he determines that this consistently results in a
reading which is 2 mm too short. With this correction, his final
result is 1.979 m.

Accuracy vs. precision There is considerable confusion
among students as to the meaning of and difference between the
terms accuracy and precision. To add to this confusion, Webster
defines them equally. In scientific investigation, however, they are
assigned distinctly different meanings which must be kept
separate.

The accuracy of an experiment is a measure of how close the
result of the experiment comes to the true value. Therefore, it is a
measure of the correctness of the result. The precision of an
experiment is a measure of how exactly the result is determined,
without reference to what that result means. It is also a measure
of how reproducible the result is. The absolute precision indicates
the magnitude of the uncertainty in the result in the same units
as the result. The relative precision indicates the uncertainty in
terms of a fraction of the value of the result.

For example, in the experiment of Example 1-1, the first
result was given with a fairly high precision. The table top was
found to be 1.982 m long, indicating an absolute precision on the
order of 1 mm and a relative precision on the order of 144¢¢. The
corrections to this result were meant to improve the accuracy by
compensating for known deviations of the first result from the
best estimate possible. These corrections did not improve the pre-
cision at all, but did, in fact, worsen the estimated precision
because the corrections were themselves only estimates of the
exact corrections.

It is obvious that we must consider accuracy and precision
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simultaneously for any experiment. It would be a waste of time
and energy to determine a result with a high precision if we knew
the result would be highly inaccurate. Conversely, a result cannot
be considered to be extremely accurate if the precision is low. For
example, if the length of the table is quoted as 2. m, the answer is
undoubtedly accurate but the amount of information available is
limited by the fact that such a precision only specifies the length
to be between 1.5 and 2.5 m long. Similarly, if the length of the
table is known to be exactly 2.000 m, there would be no point in
improving the experimental precision so long as the inaccuracy
remains about 20 mm.

Significant figures and round-off The precision of an
experimental result is implied by the way in which the result is
written, though it should generally be quoted specifically as well.
To indicate the precision, we write a number with as many digits
as are significant. The number of significant figures in a result is
defined as follows:

1. The leftmost nonzero digit is the most significant digit.

2. If there is no decimal point, the rightmost nonzero digit is the
least significant digit.

3. If there is a decimal point, the rightmost digit is the least
significant digit, even if it is a 0.

4. All digits between the least and most significant digits are
counted as significant digits.

For example, the following numbers each have four significant
digits: 1,234; 123,400; 123.4; 1,001, 1,000., 10.10, 0.0001010,
100.0. If there is no decimal point, there are ambiguities when the
rightmost digit is a 0. For example, the number 1,010 is considered
to have only three significant digits even though the last digit
might be physically significant. To avoid this ambiguity, it is
better to supply decimal points or write such numbers in exponent
form as an argument in decimal notation times the appropriate
power of 10. Thus, our example of 1,010 would be written as
1,010. or 1.010 X 102 if all four digits are significant.

When quoting results of an experiment, the number of signif-
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icant figures given should be approximately one more than that
dictated by the experimental precision. The reason for including
the extra digit is that in computation one significant figure is
sometimes lost. Errors introduced by insufficient precision in
calculations are classified as illegitimate. If an extra digit is
specified for all numbers used in the computation, the original
precision will be retained to a greater extent. For example, in the
experiment of Example 1-1, if the absolute precision of the result
is 10 mm, the third figure is known with an uncertainty of +1 and
the fourth figure is not really known at all. We would be barely
justified in specifying four figures for computation. If the precision
is 2 mm, the third digit is known quite well and the fourth figure
is known approximately. We are justified in quoting four figures,
but probably not justified in quoting five figures since we cannot
even have much confidence in the value of the fourth figure.

When insignificant digits are dropped from a number, the
last digit retained should be rounded off for the best accuracy. To
round off a number to a smaller number of significant digits than
are specified originally, truncate the number to the desired num-
ber of significant digits and treat the excess digits as a decimal
fraction. Then

1. If the fraction is greater than 14, increment the least signifi-
cant digit.

2. If the fraction is less than 14, do not increment.

3. If the fraction equals 14, increment the least significant digit
only if it is odd.

In this manner, the value of the final result is always within half
the least significant digit of the original number. The reason for
rule (3) is that in many cases the fraction equals either 0 or 14 and
consistently incrementing the least significant digit for a fraction
of 14 would lead to a systematic error. For example, 1.235 and
1.245 both become 1.24 when rounded off to three significant
figures, but 1.2451 becomes 1.25.

Random errors The accuracy of an experiment, as we
have defined it, is generally dependent on how well we can control
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