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PREFACE

St Andrews from 31st July to 19th August 1967, the chosen field being

“Mathematical Methods in Solid State and Superfluid Theory”.
Generous financial support from the NATO Scientific Affairs Division and
from all eight Scottish Universities helped us to assemble an exceptionally
distinguished panel of lecturers, and to award a number of bursaries to highly
qualified students wishing to come from distant countries.

Originally the intention had been to offer a course in mathematical
methods at early postgraduate level for theoreticians, or correspondingly
late postgraduate level for experimentalists. However, at a very early stage
of planning it was discovered that the organizers of the Les Houches Summer
Schools had simultaneously developed much the same plan for just the same
summer vacation. It was thereupon agreed that Les Houches would provide
a course on many-body theory primarily for experimental physicists, while
St Andrews would cater specifically for theoretical physicists of at least one
year’s postgraduate standing. In all, three hundred applications were re-
ceived for the seventy student places available at the School. Our thanks are
due to the members of the Selection Committee for carrying through their
onerous and unenviable task expeditiously and efficiently.

As indicated by the title, the general plan of the Summer School was to
develop those mathematical methods which are proving most valuable in
current research in solid state and superfluid theory. It was accepted from
the start that in a School extending only over three weeks important areas of
development would simply have to be omitted: in particular, topics as yet
primarily of mathematical rather than physical interest, and even any attempt
at systematic group theory—though the ideas of the group, theoretical
approach are naturally inherent in some of the lectures, for instance those
on transformation theory. The eight main lecture courses, which all students
were expected to attend, were supplemented by a series of advanced seminars
in which recent research was reported and discussed by the experts in the
field. One such seminar was notably up to date, being largely devoted to
research carried out during the period of the School!

Finally, as Director I would like to express my thanks to all those who
contributed to the success of this School: above all, to our ever-efficient
Secretary Dr C. G. Kuper, quite undeterred by having at the same time to
make final preparations for his move to Haifa; to our Steward, Arne Bors,
whose organizing capacity, vigilance and hard work proved so valuable in
Hamilton Hall where the great majority of participants were accommodated;
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to Dr W. M. Young, our Treasurer, and to other members of the Executive
Committee and their wives; and to the University Court for holding an
official Dinner in association with the School. This collected record of the
scientific proceedings is itself sufficiently indicative of our debt to the joint
Editors, Dr R. C. Clark and Dr G. H. Derrick.

R. B. DINGLE
Professor of Theoretical Physics,
University of St Andrews

EDITORS’ NOTE

on manuscripts provided by the authors and revised by them to

incorporate points raised in the discussions which followed the
lectures. Chapter 6 is limited to a synopsis and bibliography, the lecturer
holding the view that equivalent material on this topic is already easily
accessible in the literature. The manuscript for chapter 8 was prepared by
our note-takers and revised by the lecturer.

We wish to thank Mrs C. G. MacArthur, Mr T. McQueen and Mr
D. L. T. Anderson for their skilled clerical, technical and draughting assist-
ance in preparing the preprints and final typescripts, and also the many
official note-takers who devoted a considerable amount of their time to
preparing clear records of the lectures.

WITH the exception of chapters 6 and 8 these proceedings are based

R. C. CLARK
G. H. DERRICK
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VARIATIONAL PRINCIPLES

C. LAaNCzos
Institute for Advanced Studies, Dublin

1

HISTORICAL SURVEY

1.1. Introduction

THE search for the ultimate principles of the physical universe was a
popular field of contemplation throughout the ages. Even up to our own
time we made no great progress in the question, whether we will forever stay
on the surface of things and never come to grips with the “great ocean of
truth”, as Newton called it, or gradually approach something that we could
consider as basic to all physical phenomena. More often than not the human
mind tried to read something into the workings of nature, as if nature at-
tempted to achieve something, as if nature were imbued with a mathematical
intelligence. Although the idea is of a metaphysical character and in apparent
contradiction to the causal way of thinking, yet in all periods of history the
concept had its fascination. The earliest example is undoubtedly the straight
line as the shortest communication between two points. But Hero of Alex-
andria (first century A.D.) observed already that the laws of optical reflection
could be obtained from the principle that light starting at A and reaching B
via the mirror at C should reach its destination in the shortest possible time.
Later, when the law of optical refraction was discovered, this law was again
in full harmony with the same principle, which Fermat raised to a universal
principle of optics. Hence all the phenomena of geometrical optics could be
derived from the single principle that light proceeds along such a path,
which will make the time of travel between the point of departure and the
point of arrival a minimum. In the application of this principle the assump-
tion is made that the velocity of light propagation is a given quantity at
every point of the optical path.

Later in the analysis of mechanical phenomena a similar development
took place. Influenced by certain teleological ideas of Leibniz, the philo-
sophers of the eighteenth century investigated the possibility that perhaps
the laws of mechanical action, discovered by Newton, are the consequences
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2 C. LANCZOS

of an all-embracing minimum principle. Here again their efforts were
crowned with success. From a somewhat obscure and incomplete formula-
tion of Maupertuis, the great analysts Euler and Lagrange arrived at a
principle, called “principle of least action”, which permitted to conceive all
mechanical action as the consequence of minimizing a certain quantity
associated with the mechanical motion, and defined as “‘action”. Once more
the idea was victorious that there is a tendency in nature to reduce a certain
quantity, that one could consider as the measure of mechanical action, to a
minimum. Lagrange developed an entirely new branch of mathematics,
called the “calculus of variations™, to cope with this type of problems. In
his Méchanique Analytique (1788) he realized the tremendous possibilities of
the new discipline, not so much for its philosophical and metaphysical impli-
cations, as for the great perspectives which opened up to the enquiring mind.
The Newtonian form of mechanics was individualistic, every particle moving
according to the more or less accidental force which acted on it. Lagrange’s
mechanics was universalistic. The individual particle meant nothing, the
mechanical system came in the foreground. The system acted as a whole,
and a single function, the “Lagrangian function L”, dominated the entire
phenomenon. If this function was given and we knew the initial parameters
of the system, the rest was mere mathematical computation. This feature
of the Lagrangian method raised it far beyond the limitations of Newtonian
mechanics. A single scalar function was the unifying link in an infinite
variety of apparently disconnected motion phenomena. Moreover, whereas
Newton’s mechanics was strongly linked to the Cartesian type of coordinates,
the Lagrangian function could be given in arbitrary curvilinear coordinates
and thus displayed a flexibility, which was of greatest importance in the
solution of involved mechanical problems.

In the beginning of the nineteenth century the emphasis shifted to the
idea of a field, instead of the motion of discrete particles. The ideas of Fresnel
and Faraday became of dominant importance, and Maxwell succeeded in a
mathematical formulation of Faraday’s physical ideas, which comprised in
the form of eight partial differential equations, the celebrated ‘“Maxwellian
equations”, a tremendous variety of optical and electromagnetic phenomena.
Although the efforts to reduce these equations to the mechanical motion of
particles were not successful and the attempt to reduce all physical pheno-
mena to hidden motions was eventually abandoned, yet the principle of
least action was once more triumphant. Once more the fundamental Lagrang-
ian could be found, from which the Maxwellian equations were obtainable
by the process of variation.

The later development of physics was not less influenced by variational
methods. Newtonian mechanics gave way to relativistic mechanics. Euclid-
ean geometry was replaced by Riemannian geometry. The field equations
of classical physics were completely revised by quantum theory and many
cherished ideas of the past had to be abandoned. Yet it is astonishing to see



VARIATIONAL PRINCIPLES 3

that through all these changes one thing remained unchanged, viz. the possi-
bility of submitting all our equations to the operation of a variational prin-
ciple. Relativistic mechanics re-interpreted the kinetic energy of Newtonian
physics on the basis of the four-dimensional line element, but the existence
of a Lagrangian was not challenged. Only the form of the Lagrangian
changed. The field equations of Einstein’s gravitational theory were de-
ducible from a basic Lagrangian, the scalar curvature. Schrédinger’s wave
equation possessed a Lagrangian and in fact the most important feature of
wave mechanical equations is their self-adjoint character, which is equivalent
to the existence of a variational principle. The same holds of most of the
equations of quantum field theory.

Let us discuss in somewhat more detail the fundamental aspects of the
variational method. The most striking feature of the procedure is that in
spite of the apparently purpose-oriented nature of the principle it is in full
harmony with the causal way of thinking. Along the minimum path from
A to B let us pick out a point C, which can be as near to A as we wish. If
the path AC would not be a minimum path in itself, a better local minimum
would improve also on the total minimum. Hence any part of a minimum
path is in itself a minimum path. We can string together any number of
minimum paths, observing certain conditions of continuity at the end
points, and obtain thus the resulting path in the large, by putting together a
large number of local minimum paths. The original problem may involve
two points which are very far from each other. But to obtain the path from
A to the nearer point C does not demand any knowledge of what happens
beyond C, provided that we have started from A in the right direction.

The earliest application of a minimum principle to a physical pheno-
menon is reportedly the method of Heron of Alexandria, who derived the
law of optical reflection by a minimum principle. The problem of minimizing
the time of propagation can be solved by simple algebra and yields the con-
dition that the angle of incidence and the angle of reflection must be equal.
Later, when the law of optical refraction was experimentally established, the
same principle demonstrated its value again. Consider two media, the
medium I in which light propagates with the velocity v; and the medium II,
in which light travels with the velocity v, (see Fig. 1). Then the problem of
minimizing the time of travel between A and B demands that we should
find the position of the point Q by the condition that

t1+t2 = s1/01 +S2/l)2

shall become a minimum. The solution of our problem is that the point Q
must be chosen according to the condition

(sin o)/vy = (sin B)/v,

which agrees with the observed law of refraction.
The remarkable analogy between optical and mechanical phenomena



