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PREFACE

This book presents some combinatorial algorithms common in computer
science and operations research. The presentation is to stress intuitive ideas in an
algorithm and to illustrate it with a numerical example. The detailed implementa-
tion of the algorithms in PASCAL are in a separate manual. No background in
linear programming and advanced data structure is needed. Most of the material
can be taught to undergraduates while more difficult sections are only suitable to
graduate students. Chapters can be read somewhat independently so that the
instructor can select a subset of chapters for his course. This book should also be
useful as a reference book since it contains much material not available in Jour-
nals or any other books.

Chapters One and Two can be used in a one quarter course in network
theory or graph algorithms. Chapter One goes in-depth into several shortest-path
problems and introduces a decomposition algorithm for large sparse networks.
Chapter Two deals with network flows, and contains a large amount of new
material, such as the algorithms of Dinic and Kazanov which have never
appeared in English before, the optimum communication spanning tree and the
description of PERT in terms of longest paths and cheapest cuts. Also in Chapter
Two is a section on multi-terminal flows where a subset of nodes are terminal
nodes.

Chapters Three and Four cover dynamic programming and backtrack
(branch and bound) which are two general optimization techniques. Both topics
are usually not covered in detail in computer science departments. Chapter Three
introduces the concept of dynamic programming by using examples carefully
selected to show the variety of problems solvable by dynamic programming.
After the knapsack problem is solved, the periodic nature of the solutions is
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discussed. (The solution to the two-dimensional knapsack problem is based on
the papers of Gilmore and Gomory.) This chapter ends with a brief discussion of
the work of Dr. F.F. Yao. Chapter Four includes standard material on backtrack-
ing as well as a detailed description of a—f8 pruning in a game tree. It also gives
an example of the Monte Carlo technique of estimating the size of the decision
tree.

Chapters Five and Six contain a large amount of new material which should
be of interest to computer scientists and operations researchers. Chapter Five
introduces the Huffman algorithm, the Hu-Tucker algorithm, including a new
reconstruction phase, and the generalization of both algorithms to regular cost
functions. This generalization is based on the paper by Hu, Kleitman and
Tamaki. Chapter Five also describes and illustrates the Garsia-Wachs construc-
tion. Chapter Six deals with heuristic algorithms. It contains the one-point
theorem of Magazine, Nemhauser and Trotter and the new bin-packing algorithm
of Yao. The treatment of job-scheduling for the tree-constraint is a revision of
the author’s paper published in 1961.

The subject of Chapter Seven is matrix multiplications. This chapter con-
tains two combinatorial results, the Strassen’s result on the multiplication of two
large matrices and the results on the optimum order of multiplying a chain of
matrices of different dimensions. Although the problem of optimum order can
be solved by an O(n?®) algorithm based on dynamic programming, the problem
can now be solved by an O(nlogn) algorithm based on combinatorial insights.
Since the subject of finding the optimum order is a book by itself, we give the
main theorems on the subject and a heuristic O(n) algorithm which has a 15%
error bound.

The final chapter, Chapter Eight, introduces the concepts of NP-complete
problems. The purpose here is to give the reader some intuitive notions but not

a complete treatment since a book has been published dealing with this subject in
detail.

It is a pleasure to thank all persons who helped to make this book possible.
To the National Science Foundation and Dr. J. Chandra and Dr. P. Boggs of the
U. S. Army Research Office for their financial help. To Drs. F. Chin, S. Dreyfus,
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F. Ruskey, W. Savitch, A. Tucker, M. Wachs, F. Yao for reading various parts of
the drafts. To Professor L. E. Trotter, Jr. and Professor Andrew Yao for reading
the next-to-final version of the whole book and made many valuable suggestions.
To Mrs. Mary Deo for her effort in editing the earlier versions. To
Mrs. Annetta Whiteman for her excellent technical typing of so many versions of
the book. To Ms. Sue Sullivan, for skillfully converting the material into the book
formats using the UNIX system. To Mr. Y.S. Kuo for preparing the index and
writing parts of the manual. And last but most to Dr. Man-Tak Shing, for writing
the manual and his technical and general assistance throughout the writing and
production.

La Jolla, California

October 19, 1981

T. C. Hu



PREFACE TO THE 2ND EDITION

The revised and expanded edition is really a new book because it has
added two new chapters (9 and 10) with materials which have never been
published in journals or any other forms. The new materials are the research
results of the authors during the last seven years. Chapter 9 unifies many well-
known algorithms and invites the reader to mix and invent new algorithms.
Chapter 10 deals with the subject of getting minimum cuts in a network
directly. Most papers in network flows deal with the flow first and obtain
the minimum cut based on the Max Flow Min Cut theorem of Ford and
Fulkerson. In Chapter 10, the goal is to get the n — 1 fundamental minimum
cuts of an undirected network, i.e., the Gomory-Hu tree. Our investigations
on getting minimum cuts are far from completion. However, we have extended
our deadline of delivering the manuscripts of Chapters 9 and 10 by more than
one year. Hopefully, some of the insights in Chapter 10 would be of use to
most readers.

This edition has also two new appendices. Appendix A updates the ma-
terial in the first eight chapters of the first edition. Appendix B deals with
the subject which we call network algebra. In vector spaces, we have vectors
and scalars. In network algebra, we have circles and edges. In the special
case of three circles and one edge, we can have the two-valued logic of the
boolean algebra. Due to the time and space restrictions, we can only describe
the intuitive ideas and illustrate them with numerical examples. Much more
work needs to be done. Hopefully, we could write an entirely new book in the
future.

We have accepted Dover as publisher due to its tradition of publishing
important classical works at very low prices. Many readers have pointed out
printing errors (which are corrected in this edition) and have given valuable
comments. Special thanks are due to Dr. Paul A. Tucker who worked with us
in 1996-1999 and produced the Technical report CS99-625 in June 1999. The
production of the camera-ready copy of the new materials is the work of Mr.
Robert Ellis, who also made valuable technical suggestions.



viii PREFACE TO THE 2ND EDITION

It is our hope that the reader will join us in investigating the subject of
combinatorial algorithms, and in particular, the subject of network algebra
and its applications.

La Jolla and Monterey, California

November 22, 2001

T. C. Hu and M. T. Shing
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CHAPTER 1. SHORTEST PATHS

There is no shortest path to success.

§ 1.1 GRAPH TERMINOLOGY

When we try to solve a problem, we often draw a graph. A graph is often the
simplest and easiest way to describe a system, a structure, or a situation. The
Chinese proverb "A picture is worth one thousand words" is certainly true in
mathematical modeling. This is why graph theory has a wide variety of applica-
tions in physical, biological, and social sciences. Due to the wide variety of appli-
cations, we also have diverse terminology. Papers on graph theory are full of
definitions, and every author has his own definitions. Here, we introduce a
minimum number of definitions which are intuitively obvious. The notation and
terminology adopted here is similar to that of Knuth [18].

A graph consists of a finite set of vertices and a set of edges joining the ver-
tices. We shall draw small circles to represent vertices and lines to represent
edges. A system or a structure can often be represented by a graph where the
lines indicate the relations among the vertices (the elements of the system). For
example, we can use vertices to represent cities and edges to represent the high-
ways connecting the cities. We can also use vertices to represent persons and
draw an edge joining two vertices if the two persons know each other.

The reader should keep in mind that graph theory is a theory of relations,
not a theory of definitions; however, a minimum number of definitions is needed
here. Vertices are also called nodes, and edges are also called arcs, branches, or
links. We usually assume that there are n vertices in the graph G and at most
one edge joining any two vertices and there is no edge joining a node to itself.
The vertices are denoted by V; (i = 1,2,...,n) and the edge joining V; and V; is
denoted by e;;. Two vertices are adjacent if they are joined by an edge (the two
vertices are also called neighbors); two edges are adjacent if they are both incident
to the same vertex. A vertex is of degree k if there are k edges incident to it.

A sequence of vertices and edges

(V1,€12,V2,€23,V3,..., Vi)

is said to form a path from V; to V,. We can represent a path by only its vertices
as

(Vl 9V23' os »Vn)

or by only the edges in the path as
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(12, €23, «.os en—l,n)-

A graph is connected if there is a path between any two nodes of the graph.
A path is of length k if there are k edges in the path. A path is a simple path if all
the vertices Vy, V,, ..., Vo_1, V, are distinct. If V; = V,, then it is called a cycle.
In other words, a cycle is a path of length three or more from a vertex to itself.
If all vertices in a cycle are distinct, then the cycle is a simple cycle. Unless oth-
erwise stated, we shall use the word "path" to mean a simple path, "cycle" to
mean a simple cycle, and "graph" to mean a connected graph.

If an edge has a direction (just like a street may be a one-way street), then
it is called a directed edge. If a directed edge is from V; to V;, then we cannot fol-
low this edge from V; to V;. Thus in the definition of a path, we want an edge to
be undirected or to be a directed edge from V; to Vi;;. In all other definitions,
the directions of edges are ignored. A graph is called a directed graph if all edges
are directed and a mixed graph if some edges are directed and some are not. A
cycle formed by directed edges is called a directed cycle (or circuif). A directed
graph is called acyclic if there are no directed cycles. The words "graph" and
"edge" are used for an undirected graph and an undirected edge throughout this
section.

A tree is a connected graph with no cycles. If a graph has n vertices, then
any two of the following conditions characterize a tree and automatically imply the
third condition.

1. The graph G is connected.
2. The graph has n-1 edges.
3. The graph contains no cycles.

We shall denote a graph by G = (V; E) where "V" is the set of nodes or
vertices, and "E" is the set of edges in the graph. A graph G = (V'; E') is a sub-
graphof G = (V; E)if VVC Vand E' C E.

A subgraph which is a tree and which contains all the vertices of a graph is
called a spanning tree of the graph. We shall illustrate these intuitive definitions
of graph theory in Figure 1.1.

D—D)—)

Figure 1.1
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There are three paths between V; and Vs, namely (V;, V,, Vg4, Vs), (Vy, V,,
Vi), (Vy, Vi3, V4, Vi). The edges €4, €34, €34, and €45 form a spanning tree and
so do the edges €;,, €24, €34, and e45. Also, we may pick ejy, €13, €34, and €45 to
be the spanning tree. Here the node V, is of degree 3 in the graph G but is of
degree 2 in the last spanning tree. If the edge e4s was directed from V4 to Vs,
then there are still three paths from V; to Vs but none from Vs to V;.

In most applications, we associate numbers with edges or vertices. Then
the graph is called a network. All the definitions of graph theory apply to net-
works as well. In network theory, we usually use "nodes" and "arcs" instead of
"vertices" and "edges".

§1.2 SHORTEST PATH

One of the fundamental problems in network theory is to find shortest paths in a
network. Each arc of the network has a number which is the length of the arc.

In most cases, the arcs have positive lengths, but the arcs may have nega-
tive lengths in some applications. For example, the nodes may represent the vari-
ous states of a physical system, where the length associated with the arc e;
denotes the energy absorbed in transforming the state V; to the state V;. An arc
with negative length then indicates that energy is released in transforming the
state V; into the state V;. If the total length of a circuit or cycle is negative, we
say that the network contains a negative circuit.

The length of a path is the sum of lengths of all the arcs in the path. There
are usually many paths between a pair of nodes, say V; and V,, but a path with
the minimum length is called a shortest path from V to V,.

The problem of finding a shortest path is a fundamental problem and often
occurs as a subproblem of other optimization problems. In some applications, the
numbers associated with arcs may represent characteristics other than lengths and
we may want optimum paths where optimum is defined by a different criterion.
But the shortest path problem is the most common problem in the whole class of
optimum path problems. The shortest path algorithm can usually be modified

slightly to find other optimum paths. Thus we shall concentrate on the shortest
paths.

If we denote a path from V; to V by (Vy, V,, ..., V|), then e;;;; must be
either a directed arc from V; to Vi, or an undirected arc joining V; and V,
(i = 1,...,k-1). In most applications, we can think of an undirected arc between
Vi and V; as two directed arcs, one from V; to V; and the other from V; to V..
We usually are interested in three kinds of shortest-path problems:



