Chapman & Hall/CRC Biostatistics Series

Optimal Design
for Nonlinear

Response
Models

Valerii V. Fedorov
Sergei L. Leonov




Chapman & Hall/CRC Biostatistics Series

Optimal Design
for Nonlinear

Response
Models

l‘l") ,i e * 1

’Ai" lt\"; '. i "
NS
=4 e
77& :1{”'5’ LA
Valerii V. Fedorov
Sergei L. Leonov

Press is an imprint of the
Taylor & Francis Group, an informa business

A CHAPMAN & HALL BOOK



MATLAB?® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does
not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MAT-
LAB® software or related products does not constitute endorsement or sponsorship by The MathWorks
of a particular pedagogical approach or particular use of the MATLAB® software.

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20130531

International Standard Book Number-13: 978-1-4398-2151-0 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com



Optimal Design
for Nonlinear
Response
Models



Chapman & Hall/CRC Biostatistics Series

Editor-in-Chief

Shein-Chung Chow, Ph.D.

Professor

Department of Biostatistics and Bioinformatics
Duke University School of Medicine
Durham, North Carolina

Series Editors

Byron Jones
Biometrical Fellow
Statistical Methodology
Integrated Information Sciences
Novartis Pharma AG
Basel, Switzerland

Karl E. Peace

Georgia Cancer Coalition
Distinguished Cancer Scholar
Senior Research Scientist and

Professor of Biostatistics

Jiann-Ping Hsu College of Public Health
Georgia Southern University
Statesboro, Georgia

Jen-pei Liu
Professor
Division of Biometry
Department of Agronomy
National Taiwan University
Taipei, Taiwan

Bruce W. Turnbull

Professor
School of Operations Research
and Industrial Engineering
Cornell University
Ithaca, New York



Chapman & Hall/CRC Biostatistics Series

Adaptive Design Methods in
Clinical Trials, Second Edition
Shein-Chung Chow and Mark Chang

Adaptive Design Theory and
Implementation Using SAS and R
Mark Chang

Advanced Bayesian Methods for Medical
Test Accuracy
Lyle D. Broemeling

Advances in Clinical Trial Biostatistics
Nancy L. Geller

Applied Meta-Analysis with R
Ding-Geng (Din) Chen and Karl E. Peace

Basic Statistics and Pharmaceutical
Statistical Applications, Second Edition
James E. De Muth

Bayesian Adaptive Methods for
Clinical Trials

Scott M. Berry, Bradley P. Carlin,
J. Jack Lee, and Peter Muller

Bayesian Analysis Made Simple: An Excel
GUI for WinBUGS
Phil Woodward

Bayesian Methods for Measures of
Agreement
Lyle D. Broemeling

Bayesian Methods in Health Economics
Gianluca Baio

Bayesian Missing Data Problems: EM,
Data Augmentation and Noniterative
Computation

Ming T. Tan, Guo-Liang Tian,

and Kai Wang Ng

Bayesian Modeling in Bioinformatics
Dipak K. Dey, Samiran Ghosh,
and Bani K. Mallick

Biostatistics: A Computing Approach
Stewart J. Anderson

(Causal Analysis in Biomedicine and
Epidemiology: Based on Minimal
Sufficient Causation

Mikel Aickin

Clinical Trial Data Analysis using R
Ding-Geng (Din) Chen and Karl E. Peace

Clinical Trial Methodology
Karl E. Peace and Ding-Geng (Din) Chen

Computational Methods in Biomedical
Research
Ravindra Khattree and Dayanand N. Naik

Computational Pharmacokinetics
Anders Kallén

Confidence Intervals for Proportions and
Related Measures of Effect Size
Robert G. Newcombe

Controversial Statistical Issues in
Clinical Trials
Shein-Chung Chow

Data and Safety Monitoring Committees
in Clinical Trials
Jay Herson

Design and Analysis of Animal Studies in
Pharmaceutical Development
Shein-Chung Chow and Jen-pei Liu

Design and Analysis of Bioavailability and
Bioequivalence Studies, Third Edition
Shein-Chung Chow and Jen-pei Liu

Design and Analysis of Bridging Studies
Jen-pei Liu, Shein-Chung Chow,
and Chin-Fu Hsiao

Design and Analysis of Clinical Trials with
Time-to-Event Endpoints
Karl E. Peace

Design and Analysis of Non-Inferiority
Trials

Mark D. Rothmann, Brian L. Wiens,

and lvan S. F. Chan

Difference Equations with Public Health
Applications
Lemuel A. Moyé and Asha Seth Kapadia

DNA Methylation Microarrays:
Experimental Design and Statistical
Analysis

Sun-Chong Wang and Arturas Petronis



DNA Microarrays and Related Genomics
Techniques: Design, Analysis, and
Interpretation of Experiments

David B. Allison, Grier P. Page,

T. Mark Beasley, and Jode W. Edwards

Dose Finding by the Continual
Reassessment Method
Ying Kuen Cheung

Elementary Bayesian Biostatistics
Lemuel A. Moyé

Frailty Models in Survival Analysis
Andreas Wienke

Generalized Linear Models: A Bayesian
Perspective

Dipak K. Dey, Sujit K. Ghosh,

and Bani K. Mallick

Handbook of Regression and Modeling:
Applications for the Clinical and
Pharmaceutical Industries

Daryl S. Paulson

Interval-Censored Time-to-Event Data:
Methods and Applications

Ding-Geng (Din) Chen, Jianguo Sun,

and Karl E. Peace

Joint Models for Longitudinal and Time-
to-Event Data: With Applications in R
Dimitris Rizopoulos

Measures of Interobserver Agreement
and Reliability, Second Edition
Mohamed M. Shoukri

Medical Biostatistics, Third Edition
A. Indrayan

Meta-Analysis in Medicine and Health
Policy
Dalene Stangl and Donald A. Berry

Monte Carlo Simulation for the
Pharmaceutical Industry: Concepts,
Algorithms, and Case Studies

Mark Chang

Multiple Testing Problems in
Pharmaceutical Statistics

Alex Dmitrienko, Ajit C. Tamhane,
and Frank Bretz

Optimal Design for Nonlinear Response
Models
Valerii V. Fedorov and Sergei L. Leonov

Randomized Clinical Trials of
Nonpharmacological Treatments
Isabelle Boutron, Philippe Ravaud, and
David Moher

Randomized Phase Il Cancer Clinical
Trials
Sin-Ho Jung

Sample Size Calculations in Clinical
Research, Second Edition
Shein-Chung Chow, Jun Shao

and Hansheng Wang

Statistical Design and Analysis of
Stability Studies
Shein-Chung Chow

Statistical Evaluation of Diagnostic
Performance: Topics in ROC Analysis
Kelly H. Zou, Aiyi Liu, Andriy Bandos,

Lucila Ohno-Machado, and Howard Rockette

Statistical Methods for Clinical Trials
Mark X. Norleans

Statistics in Drug Research:
Methodologies and Recent
Developments

Shein-Chung Chow and Jun Shao
Statistics in the Pharmaceutical Industry,
Third Edition

Ralph Buncher and Jia-Yeong Tsay
Translational Medicine: Strategies and
Statistical Methods

Dennis Cosmatos and Shein-Chung Chow



Symbol Description

Y, Y response or independent or
observed variable

7,M response function

T, X independent or control or
design or regressor variables,
predictors

Z,% uncontrolled regressor vari-
ables, covariates

0,6 parameters

m number of parameters

(C] parameter space

f(x) vector of basis functions

n(x,0) response function

€€ (response) error

a? variance of the error

En discrete design

£,&(dx) continuous design

&* optimal design

= set of designs

zr;,X;  design support points
X support (design) region

Tiy Ty

Pi, w;

n

N
M,M(§)

M

p(x,0)
D,D

d(x,§)

U, (M)
Q

w(x,8)

$(x)
®(¢)

number of observations at x;
weight of observations at x;
number of support points
total number of observations
normalized information ma-
trix

nonnormalized information
matrix

Fisher information matrix
dispersion matrix of estima-
tors 0

normalized variance of pre-
dicted response 7(x, 9)
optimality criterion
variance-covariance matrix
of random parameters
sensitivity function for de-
sign £ at x

penalty/cost function at x
total penalty/cost for design
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Preface

Our main intent is to introduce the reader to the statistical area that in rather
loose terms can be called “model-based optimal design of experiments.” The
word “design” implies that there exist some variables, the values of which
can be chosen in the planning stage. We focus our exposition on cases when
a researcher can describe the relation between these variables and responses
(response variables) by means of a mathematical model that describes the
observed system. Often the system description is based on the deterministic
model while the observational component is modeled via stochastic mecha-
nisms. However, it is not always the case: biological systems or clinical trials
are good examples of when stochastic models can be used for system de-
scription as well. See, for instance, examples in Section 7.4 where stochastic
differential equations are used to model intrinsic patient variability in pharma-
cokinetic studies. Regression models with random parameters provide another
example of such a setting.

Both authors spent more than a decade in the pharmaceutical industry
developing the optimal design machinery for earlier phases of clinical studies.
This explains why the majority of examples are related to biopharmaceutical
applications; see earlier survey papers by Fedorov and Leonov (2005) [144],
Fedorov et al. (2007) [133]. Nevertheless, we would like to emphasize that the
potential applications are much wider. The main distinction of this monograph
from many others published recently is the strong emphasis on nonlinear with
respect to unknown parameters models. Still, the exposition of key ideas of
optimal experimental design is much simpler and more transparent for linear
models. That is why the reader will find rather extensive introductory material
that is devoted to the linear case.

The book is intended for graduate students and researchers who are inter-
ested in the theory and applications of model-based experimental design. The
main body of the book requires a modest formal background in calculus, ma-
trix algebra and statistics. Thus the book is accessible not only to statisticians,
but also to a relatively broad readership, in particular those with backgrounds
in natural sciences and engineering.

We would like to express our gratitude to the many colleagues with whom
we have collaborated on various optimal design problems over recent years,
in particular Alexander Aliev, Vladimir Anisimov, Anthony Atkinson, Brian
McHugh, Vladimir Dragalin, Nancy Flournoy, Bob Gagnon, David Gruben,
Agnes Herzberg, Byron Jones, Mindy Magee, Sam Miller, Viacheslav Vasiliev,

xxi
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Yuehui Wu, Rongmei Zhang, and Anatoly Zhigljavsky. The second author
would like to thank members of the PODE (Population Optimum Design of
Experiments) community for many fruitful discussions of population optimal
design methods and software, in particular Barbara Bogacka, Caroline Baz-
zoli, Steve Duffull, Andy Hooker, France Mentré, Joakim Nyberg, and Kay
Ogungbenro.

We would like to acknowledge two anonymous reviewers for their helpful
comments on the draft version of the manuscript.

We are extremely grateful to members of the CRC Press Team for their
continuous help during our work on this book, in particular, to David Grubbs
for his ultimate patience and support while working with us, to Mimi Williams
for her excellent proofreading, and to Marcus Fontaine for his efficient help
with our last minute ITEX questions.

Valerii V. Fedorov
Sergei L. Leonov
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Introduction

Over the next few pages we provide a rather sketchy and likely subjective
overview of the evolution of optimal experimental design. With advances of
the Internet, more facts can be found online. As far as authors’ preferences are
concerned, the first author would “Google” the Web, while the second author
would be “Yahooing.”

Stigler (1974) [368] provides exciting reading on the early “formalized”
attempts of optimal design of experiments. The first well-documented contri-
bution to optimal design theory was made by Kirstine Smith (1918) [364]. She
explored the regression problem for univariate polynomials of order up to six,
with the control variable varying between —1 and 1. The observational errors
were independent, identically distributed and additive. Smith found designs
that minimize the maximum variance of prediction over the design region
(later called G-optimal). Other designs were considered, for example uniform
designs, and the effect of nonconstant variance was investigated. Smith’s paper
thus had all the components needed to specify an optimal design: a response
model, a design region, a design criterion, specification of observational errors
and a comparison of optimal designs with designs that are popular among
practitioners. Smith’s paper was all but forgotten for nearly 40 years.

Wald (1943) [391] started the comparison of designs using values of noncen-
trality parameters for tests of hypotheses about parameters defining a response
model. This problem led him to the necessity of comparing the determinants
of the information matrix, i.e., to D-optimality. The close relation of the D-
criterion with Shannon’s information was explored by Lindley (1956) [258] in
the Bayesian setting. Very soon this criterion became one of the most used
(and sometimes abused) criteria in design theory. Guest (1958) [184] showed
that support points of the G-optimal design for the polynomial of order m
coincide with roots of the derivatives of the (m — 1)-th Legendre polynomial
together with the end points. Hoel (1958) [201] constructed D-optimal designs
and commented that his designs were the same as those of Guest. Two years
later Kiefer and Wolfowitz (1960) [232] proved the equivalence of G- and D-
optimality and started to treat experimental design as a particular area of
convex optimization theory. The latter direction was explored by Karlin and
Studden (1966) [225] and by Fedorov (1969, 1972) [125], [127].

Jack Kiefer undoubtedly was the main contributor to the development of
the core of optimal design theory in the 1950s and 1960s. For a survey and
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collection of his papers on optimal design, see Wynn (1984) [418] and Brown
et al. (1985) [57].

Elfving (1952) [114] gave a geometrical interpretation of optimal designs
and introduced a criterion that became known as A-optimality (average vari-
ance of regression parameter estimators). He found that the points of the
optimum design lie on the smallest ellipsoid that contains the design region,
an insight further developed by Silvey and Titterington (1973) [361]. Elfving’s
results were almost immediately extended to D-optimality by Chernoff (1953)
[70] who also introduced the concept of locally optimal design for nonlinear
regression models; see Chernoff (1972) [71]. This concept will be used rather
extensively in our book.

Box and Lucas (1959) [54] used the results of Chernoff, Elfving, and Wald
to find locally D-optimal designs for nonlinear models arising in chemical
kinetics. Box and Hunter (1965) [53] developed an adaptive strategy for up-
dating the design one trial at a time as observations become available. They
extended Lindley’s result [258] for the Bayesian justification of D-optimality
and provided a derivation of the best conditions for the next trial. The ap-
proach based on the use of the Shannon information measure was further
developed by Klepikov and Sokolov (1961) [234] and elaborated by Fedorov
and Pazman (1968) [150], Caselton and Zidek (1984) [63], Caselton et al.
(1992) [62], and revisited by Sebastiani and Wynn (2000) [354].

Box and Hunter (1965) [53] proved that to maximize the decrement of
the determinant of the variance-covariance matrix of estimated parameters,
observation(s) should be done at the point where the variance of prediction
of the linearized model attains its maximum. It is a short step to consider
the same “adaptive” procedure for linear models and to observe that optimal
designs are independent of parameter values, and so to obtain the algorithm
for the iterative construction of optimal designs. This idea was earlier intro-
duced by Klepikov and Sokolov (1961, 1963) [234], [365], [366] who used the
term “continuous” design, which in the modern setting corresponds to the
first-order algorithm with constant (but very small) step length. The further
development of iterative construction of optimal designs was accomplished by
Fedorov (1971, 1972) [126], [127], Wynn (1970, 1972) [416], [417], Fedorov
and Malyutov (1972) [148], Atwood (1973) [25], Tsay (1976) [385], Wu and
Wynn (1978) [409], Wu (1978) [408]. These results triggered a series of publica-
tions on numerical methods of optimal design construction; cf. Mitchell (1974)
[286], Fedorov and Uspensky (1975) [151], Titterington (1976) [375], Silvey et
al. (1978) [362], Torsney (1983) [380], Nachtsheim (1987) [293], Atkinson and
Donev (1992) [19], Gaffke and Mathar (1992) [166], Atkinson et al. (2007)
[24].

If several models are of interest, the standard criteria can be extended to
compound criteria that are weighted linear combinations of standard criteria
and to which the standard convex design theory applies; see Atkinson and Cox
(1974) [18], Lauter (1974) [249]. If interest lies solely in choosing one model
out of two or more competing models, the T-optimum designs of Atkinson and
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Fedorov (1975a,b) [21], [20] address the discrimination problem in the “fre-
quentist” setting. Equivalence between model discrimination problems and
parameter estimation problems was initially discussed in Wald (1943) [391];
Fedorov and Khabarov (1986) [140] proved the equivalence of these problems
for a range of different criteria. Box and Hill (1967) [51] described a Bayesian
procedure for discriminating between models that leads to the sequential up-
dating of the prior probabilities of the models. Fedorov and Pédzman (1968)
[150] developed an adaptive Bayesian procedure for simultaneous model dis-
crimination and parameter estimation.

Special types of optimal design problems arise in environmental studies,
with spatial- and longitudinal-type experiments. In both cases the assump-
tion of independence does not hold, and one has to take into account the
dependence between observations introducing various models for covariance
functions. Problems of optimal allocations or optimal sampling in the case of
correlated observations happened to be mathematically rather difficult. First
attempts at constructing optimal sampling schemes in the optimal design set-
ting were done by Sacks and Ylvisacker (1966, 1968a,b) [347], [348], [349] in
a series of publications where they proposed asymptotically optimal alloca-
tions. Cambanis (1985) [59], Matérn (1986) [270], Megreditchan (1979) [274],
Micchelli and Wahba (1981) [282] developed various aspects of optimal spatial
allocations. Summaries of results in that area can be found in Fedorov (1996)
(131], Guttorp et al. (1993) [185], Martin (1996) [268], Fedorov and Hackl
(1997) [135], Miiller (2007) [291].

The first comprehensive volume on the theory of optimal experimental
design was written by Fedorov (1969, 1972) [125], [127]. Silvey (1980) [360]
gave a very compact description of the theory of optimal design for estimation
in linear models. Other systematic monographs were published by Bandemer
et al. (1977) [30], Ermakov (1983) [115], Pdzman (1986) [306], Ermakov and
Zhigljavsky (1987) [116], Pilz (1991) [309], Atkinson and Donev (1992) [19],
Pukelsheim (1993) [328], Schwabe (1996) [353], Fedorov and Hackl (1997)
[135], Wu and Hamada (2002) [414], Melas (2006) [275], Atkinson et al. (2007)
[24], Berger and Wong (2009) [44], Morris (2010) [289], Goos and Jones (2011)
[180], Rasch et al. (2011) [335], Pronzato and Pdzman (2013) [322].

We do not discuss factorial experiments in this book. While there are a lot
of intersections between “model-based design of experiments” and “design of
factorial experiments,” the differences are mainly in models and methods of
optimal design construction. In the latter case, these are primarily combina-
torial and algebraic methods; see Fisher (1971) [157], Wu and Hamada (2002)
[414], Bailey (2008) [29].

While the focus of our monograph is on nonlinear models, we always start
the exposition of key ideas for linear with respect to unknown parameters
models. Then we move toward linearization of models, locally optimal estima-
tors and designs, and after that proceed to multi-stage and adaptive designs.
In discussing adaptive procedures, we use those that are stopped when the
sample size (number of observations) reaches the predetermined value. Often
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this stopping rule is called “noninformative stopping” compared to “infor-
mative stopping” when the rule depends on the observed responses and/or
current values of estimators.

Models and optimization problems. In the description of experiments we
distinguish between dependent, or response variables that are altered by the
change in the experimental conditions, and independent, or predictor variables
that describe the conditions under which the response is obtained. The former
variables are usually denoted by y. For the latter we distinguish between
variables x that are controlled by the experimenter, and variables z, often
called covariates that are not, such as weather conditions in meteorology or
some of a patient’s physical and physiological characteristics in clinical studies.
Dependent and independent variables are often vectors that we highlight by
using a boldface font, as in y, x and z.

The set of values of control variables at which the response variable may be
observed is called a design region X. Usually, X is a finite set with a dimension
corresponding to the number of design variables. More generally, X can be a
set in the functional space. The structure of X is often not essential for major
theoretical results in optimal design theory, while the computational aspects
can be quite challenging.

Various design constraints are often encountered in practice. In a time-
series context, it is typically not possible to have multiple observations at the
same time point. Similar restrictions may be imposed due to geographical
conditions, mixing constraints, etc. Among the most common causes for con-
straints are cost limitations and ethical concerns. For instance, the number
of patients enrolled in a clinical study of a new drug depends on the study
budget. In pharmacokinetic studies the number of drawn blood samples is
often limited, in particular when drugs are investigated in special populations
(e.g., in pediatric studies). Ethical, cost or any other constraints are quantified
by the introduction of respective penalty functions together with inequalities
that define their admissible values.

Once the response, control variables, and a model that links them are
selected, a researcher should quantify the study objectives and constraints.
Typically, objectives are described by a utility function and a particular cri-
terion of optimality. In dose-finding studies, probability of efficacy without
toxicity provides an example of the utility function, while the variance of the
estimator of a dose that maximizes this probability may be selected as an
optimality criterion. In classical design theory, a standard objective is the es-
timation of unknown parameters that define the response model; optimality
criteria are scalar functions of the variance-covariance matrix of parameter es-
timates. Cost is proportional to the number of observations and has an upper
bound.

Through decades of evolution optimal design theory extended in many
directions adding more complex models and new types of problems to the tra-
ditional regression models and parameter estimation problem. We start the
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exposition with standard regression models and then proceed with various
extensions, which include, among others, multiresponse regression, regression
models with random coefficients, and models described by stochastic differen-
tial equations. The latter two types of models add an intrinsic component of
variability to the observational errors. Selection of the most informative vari-
ables discussed in Chapter 9 provides an example where traditional methods of
optimal experimental design are applied to problems arising in observational
studies.

Illustrating Examples

As noted earlier, the main ideas of optimal experimental design may be
applied to a large number of problems in which both response and control
variables have rather complicated structures. Here we outline a few examples;
for details, see Chapters 6 — 9.

Dose-response studies. Dose-response models arise in clinical trials,
either with a categorical outcome (e.g., success — failure as a response to
the new experimental treatment, or disease progress on an ordinal scale) or
continuous response (e.g., studies of pain medications when patients mark
their pain level on a visual analog scale). In these examples, = represents
the dose of a drug administered to the patient. The design problem may be
formulated as finding those doses, within the admissible range, that provide
the most accurate estimation of model parameters or utility functions given
the sample size; see Chapters 6 and 8. In a more complex setting, the design
variable = represents a dosing regimen (e.g., drug amount and frequency of
drug administration).

Bioassay studies. Multiparameter logistic models with continuous re-
sponse, sometimes referred to as the Ey .« or Hill models, are widely used
in bioassay studies. Examples include models that relate the concentration
of an experimental drug to the percentage/number of surviving cells in cell-
based assays or models that quantify the concentration of antigens/antibodies
in enzyme-linked immunosorbent assays (ELISA). In this context, the design
variable = represents the drug concentration level; see Sections 6.3, 6.3.1, 8.1
for details.

Clinical PK studies. Multiple blood samples are taken in virtually
all clinical studies, and the collected data are analyzed by means of various
PK compartmental models. This leads to quite sophisticated nonlinear mixed
effects models, which are discussed in Chapter 7. In these models x and y
are k-dimensional vectors that represent sequences of &£ sampling times and
respective observations for a particular patient.

Penalized or cost-based designs. In the previous example (PK studies)
it is quite obvious that each extra sample provides additional information.
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On the other hand, the number of samples that may be drawn from each
patient is restricted because of blood volume limitations and other logistic
and ethical reasons. Moreover, the analysis of each sample is associated with
monetary cost. Thus, it makes sense to incorporate costs and other constraints
in the design; see Chapter 4. In dose-finding studies exposure to high doses
of an experimental drug may increase chances of toxicity, while exposure to
low doses may deprive the patient of a potential cure. Both outcomes are
associated with medical ethics. The objective of optimal design is to provide
a quantified compromise between the ethics and the informativeness of the

study. Examples of cost-based and constrained designs are provided in Sections
6.4, 6.5, 7.2, 7.3, 8.2, 8.3, and 9.2.

The structure of the book is as follows. In Chapter 1 we start with lin-
ear regression and least squares estimation and introduce relevant objects and
problems of optimal design. At the end of Chapter 1 we focus on the maximum
likelihood estimator and discuss estimation methods for nonlinear regression
models. Convex design theory is the subject of Chapter 2. Numerical meth-
ods of the construction of optimal designs are dealt with in Chapter 3, and
constrained /cost-based designs are considered in Chapter 4. In Chapter 5 we
bridge earlier results to the case of nonlinear regression models where optimal
designs depend on values of unknown parameters. In Chapters 6 — 9 we dis-
cuss the application of optimal design theory in biopharmaceutical problems.
Chapter 6 is devoted to dose-response models while Chapter 7 addresses the
application of optimal design in pharmacokinetic (PK) and pharmacodynamic
(PD) studies and includes a description of the MATLAB'Y-based library for
the construction of optimal sampling schemes for PK/PD models. Adaptive
model-based designs are discussed in Chapter 8. Chapter 9 presents several
examples of nontraditional applications of optimal experimental design. A list
of potentially useful formulae from matrix algebra and matrix differential cal-
culus is given in Chapter 10.

Computations for all examples were performed using various software plat-
forms: MATLAB, SAS® and R. For further details, see Chapters 6 — 9.
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