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Problems in engineering, computational science, and the physical and biological
sciences are using increasingly sophisticated mathematical techniques. Thus, the
bridge between the mathematical sciences and other disciplines is heavily traveled.
The correspondingly increased dialog between the disciplines has led to the estab-
lishment of the series: Interdisciplinary Applied Mathematics.

The purpose of this series is to meet the current and future needs for the interaction
between various science and technology areas on the one hand and mathematics on
the other. This is done, firstly, by encouraging the ways that that mathematics may be
applied in traditional areas, as well as point towards new and innovative areas of
applications; and, secondly, by encouraging other scientific disciplines to engage in a
dialog with mathematicians outlining their problems to both access new methods
and suggest innovative developments within mathematics itself,

The series will consist of monographs and high-level texts from researchers working
on the interplay between mathematics and other fields of science and technology.
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Preface

H peyadn téxvn BpiokeTaw omovénmore o avlpwmos katTophlvel
V' avaryvwpilel Tov equTOV TOU Ko Vo TOV ERPPECEL UE TANPOTNT Q¢
JLES OTO EAGXLOTO.

Great art is found wherever man achieves an understanding of self
and 1is able to express himself fully in the simplest manner.

Odysseas Elytis (1911-1996)
1979 Nobel Laureate in Literature
The magic of Papadiamantis

Biopharmaceutics, pharmacokinetics, and pharmacodynamics are the most
important parts of pharmaceutical sciences because they bridge the gap between
the basic sciences and the clinical application of drugs. The modeling approaches
in all three disciplines attempt to:

e describe the functional relationships among the variables of the system
under study and

e provide adequate information for the underlying mechanisms.

Due to the complexity of the biopharmaceutic, pharmacokinetic, and phar-
macodynamic phenomena, novel physically physiologically based modeling ap-
proaches are sought. In this context, it has been more than ten years since we
started contemplating the proper answer to the following complexity-relevant
questions: Is a solid drug particle an ideal sphere? Is drug diffusion in a well-
stirred dissolution medium similar to its diffusion in the gastrointestinal fluids?
Why should peripheral compartments, each with homogeneous concentrations,
be considered in a pharmacokinetic model? Can the complexity of arterial and
venular trees be described quantitatively? Why is the pulsatility of hormone
plasma levels ignored in pharmacokinetic-dynamic models? Over time we real-
ized that questions of this kind can be properly answered only with an intuition
about the underlying heterogeneity of the phenomena and the dynamics of the
processes. Accordingly, we borrowed geometric, diffusional, and dynamic con-
cepts and tools from physics and mathematics and applied them to the analysis
of complex biopharmaceutic, pharmacokinetic, and pharmacodynamic phenom-
ena. Thus, this book grew out of our conversations with fellow colleagues,

vii
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correspondence, and joint publications. It is intended to introduce the concepts
of fractals, anomalous diffusion, and the associated nonclassical kinetics, and
stochastic modeling, within nonlinear dynamics and illuminate with their use
the intrinsic complexity of drug processes in homogeneous and heterogeneous
media. In parallel fashion, we also cover in this book all classical models that
have direct relevance and application to the biopharmaceutics, pharmacokinet-
ics, and pharmacodynamics.

The book is divided into four sections, with Part I, Chapters 1-3, presenting
the basic new concepts: fractals, nonclassical diffusion-kinetics, and nonlinear
dynamics; Part II, Chapters 4-6, presenting the classical and nonclassical mod-
els used in drug dissolution, release, and absorption; Part III, Chapters 7-9,
presenting empirical, compartmental, and stochastic pharmacokinetic models;
and Part IV, Chapters 10 and 11, presenting classical and nonclassical phar-
macodynamic models. The level of mathematics required for understanding
each chapter varies. Chapters 1 and 2 require undergraduate-level algebra and
calculus. Chapters 3-8, 10, and 11 require knowledge of upper undergraduate
to graduate-level linear analysis, calculus, differential equations, and statistics.
Chapter 9 requires knowledge of probability theory.

We would like now to provide some explanations in regard to the use of
some terms written in italics below, which are used extensively in this book
starting with homogeneous vs. heterogeneous processes. The former term refers
to kinetic processes taking place in well-stirred, Euclidean media where the
classical laws of diffusion and kinetics apply. The term heterogeneous is used
for processes taking place in disordered media or under topological constraints
where classical diffusion-kinetic laws are not applicable. The word nonlinear
is associated with either the kinetic or the dynamic aspects of the phenomena.
When the kinetic features of the processes are nonlinear, we basically refer to
Michaelis-Menten-type kinetics. When the dynamic features of the phenomena
are studied, we refer to nonlinear dynamics as delineated in Chapter 3.

A process is a real entity evolving, in relation to time, in a given environment
under the influence of internal mechanisms and external stimuli. A model is an
image or abstraction of reality: a mental, physical, or mathematical represen-
tation or description of an actual process, suitable for a certain purpose. The
model need not be a true and accurate description of the process, nor need the
user have to believe so, in order to serve its purpose. Herein, only mathematical
models are used. Either processes or models can be conceived as boxes receiv-
ing inputs and producing outputs. The boxes may be characterized as gray or
black, when the internal mechanisms and parameters are associated or not with
a physical interpretation, respectively. The system is a complex entity formed
of many, often diverse, interrelated elements serving a common goal. All these
elements are considered as dynamic processes and models. Here, determinis-
tic, random, or chaotic real processes and the mathematical models describing
them will be referenced as systems. Whenever the word “system” has a specific
meaning like process or model, it will be addressed as such.

For certain processes, it is appropriate to describe globally their properties
using numerical techniques that extract the basic information from measured
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data. In the domain of linear processes, such techniques are correlation analysis,
spectral analysis, etc., and in the domain of nonlinear processes, the correlation
dimension, the Lyapunov exponent, etc. These techniques are usually called
nonparametric models or, simply, indices. For more advanced applications, it
may be necessary to use models that describe the functional relationships among
the system variables in terms of mathematical expressions like difference or dif-
ferential equations. These models assume a prespecified parametrized structure.
Such models are called parametric models.

Usually, a mathematical model simulates a process behavior, in what can
be termed a forward problem. The inverse problem is, given the experimental
measurements of behavior, what is the structure? A difficult problem, but an
important one for the sciences. The inverse problem may be partitioned into the
following stages: hypothesis formulation, i.e., model specification, definition of
the experiments, identifiability, parameter estimation, experiment, and analysis
and model checking. Typically, from measured data, nonparametric indices are
evaluated in order to reveal the basic features and mechanisms of the underlying
processes. Then, based on this information, several structures are assayed for
candidate parametric models. Nevertheless, in this book we look only into
various aspects of the forward problem: given the structure and the parameter
values, how does the system behave?

Here, the use of the term “model” follows Kac’s remark, “models are cari-
catures of reality, but if they are good they portray some of the features of the
real world” [1]. As caricatures, models may acquire different forms to describe
the same process. Also, Fourier remarked, “nature is indifferent toward the dif-
ficulties it causes a mathematician,” in other words the mathematics should be
dictated by the biology and not vice versa. For choosing among such compet-
ing models, the “parsimony rule,” Occam’s “razor rule,” or Mach’s “economy
of thought” may be the determining criteria. Moreover, modeling should be
dependent on the purposes of its use. So, for the same process, one may de-
velop models for process identification, simulation, control, etc. In this vein,
the tourist map of Athens or the system controlling the urban traffic in Mar-
seilles are both tools associated with the real life in these cities. The first is an
identification model, the second, a control model.

Over the years we have benefited enormously from discussions and collab-
orations with students and colleagues. In particular we thank P. Argyrakis,
D. Barbolosi, A. Dokoumetzidis, A. Kalampokis, E. Karalis, K. Kosmidis, C.
Meille, E. Rinaki, and G. Valsami. We wish to thank J. Lukas whose suggestions
and criticisms greatly improved the manuscript.

A. Tliadis
Marseilles, France
August 2005

P. Macheras
Piraeus, Greece
August 2005
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