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FOREWORD

The discovery, design, and development of drugs is a
complex endeavor of optimizing on three axes: efficacy,
safety, and druggability or drug-likeness. Each of these
axes is a potential cause of attrition as a new molecular
entity progresses through the many phases of drug
development. Out of the 5000-10,000 compounds evalu-
ated in discovery efforts, only 250 enter preclinical
testing, 5 enter clinical trials, and only 1 is granted
approval by the Food and Drug Administration at a cost
that is estimated between US$1.3-1.6 billion [1]. Efforts
to increase innovation, decrease attrition, and lower the
cost of drug development are the focus of the pharma-
ceutical industry and regulatory agencies alike. Advances
have been made in some disciplines such as drug metab-
olism and pharmacokinetics (PK), particularly in the
area of absorption, distribution, metabolism, and excre-
tion (ADME) studies. For example, a root cause analy-
sis of clinical attrition [2] showed that unacceptable PK
or bioavailability accounted for 40% of clinical attrition
in the 1990s but within a decade had been reduced to
less than 10%, in large part by the identification and
mitigation of risks associated with ADME/PK proper-
ties earlier in the drug discovery process. This was
enabled by the introduction of automated high- and
medium-throughput screening of lead optimization can-
didates in the discovery space. While impressive, this
improvement alone is not sufficient to reverse the rising
costs and long development cycle times. It is, however,
a step in the right direction. As the pharmaceutical
industry has evolved, the focus of ADME studies has
shifted from studies conducted primarily in support of
regulatory submissions to playing a significant role in
the earliest stages of the discovery phase of drug devel-
opment. The engagement of ADME scientists in the

discovery space has allowed drug candidates to progress
in the development pipeline to the next milestone with
greater probability of success because desirable charac-
teristics, such as good aqueous solubility for absorption,
high bioavailability, and balanced clearance, have been
engineered into the molecules, and liabilities such as
high first-pass metabolism and unacceptable drug-drug
interactions potential have been engineered out.

The history of the discipline of drug metabolism and
PK and ADME studies, with its roots in organic chem-
istry and pharmacology, has been well chronicled [3-8].
The rapid advancement of the discipline over the past
50 years is clearly linked to the development of ever-
increasingly sophisticated analytical tools and the
growth of the pharmaceutical industry. The vast number
of tools at the disposal of drug metabolism scientists has
transformed the study of xenobiotics from descriptive
to quantitative, in vivo to the molecular levels, and from
simply characterizing to predicting ADME properties.

It would be beyond the scope of this introduction
to provide a historical accounting of the numerous
advances of technology that have shaped the field. There
are, however, three noteworthy milestones in the evolu-
tion of the discipline that merit mention: the use of
radioisotopes in metabolism and distribution studies;
the discovery of the superfamily of drug metabolizing
enzymes, the cytochrome P450s; and the revolutionizing
impact of mass spectrometry as both a qualitative and
quantitative tool.

With the discovery of a new radioisotope of carbon,
"C, by Martin and Ruben [9], this powerful analytical
tool enabled the first radiolabeled studies that eluci-
dated the metabolic pathways and the disposition of
xenobiotics in rats [10, 11]. The use of radiotracers went

xxi



xxii FOREWORD

on to become an indispensable tool in biochemical
pathway elucidation and in drug disposition studies.
While "“C-labeled compounds are predominantly used
in in vivo studies to fulfill regulatory requirement, the
development of new reagents and techniques in tritium
labeling now have allowed stereo- and site-selective
synthesis with high specific activity, making these labeled
molecule readily available for use in the earliest phases
of drug discovery [12, 13].

The discovery of the cytochrome P450s and their role
in the metabolism of endo- and xenobiotics opened a
field of science that continues to grow and have a tre-
mendous impact on the development of drugs and the
practice of medicine. The pioneering research in this
field has been well documented by Estabrook, a key
contributor to our current understanding of this super-
family of enzymes [14]. The magnitude of research on
the cytochrome P450s has exploded since 2003 (from
greater than 2000 literature references to over 67,000
citations, as reflected by searching the PubMed database
in 2011) The expanding knowledge of the cytochrome
P450s has impacted early discovery efforts via assays for
metabolic stability, species comparison in the selection
of the most relevant species for toxicology studies, iden-
tification of the primary enzymes involved in the metab-
olism of a candidate drug, and potential polymorphic or
drug-drug interaction liabilities of a candidate drug. The
influence of the research on the cytochrome P450s also
reaches into the clinical realm of drug development in
the need for and design of clinical drug—drug interaction
trials as well as in the regulatory guidance on drug inter-
actions [15, 16].

No single analytical technique has had a more power-
ful effect on drug development than mass spectrometry,
with an impact on multiple disciplines, such as chemis-
try, biology, and ADME [17]. An excellent review of
mass spectrometry and its applications in drug metabo-
lism and PK has recently been published [18] Mass spec-
trometry moved from the being a specialized tool largely
used in structure identification to a “routine,” but albeit
powerful, analytical technology used across the pharma-
ceutical industry and academia alike. The selectivity,
sensitivity, and speed of mass spectrometry enabled
much of the success seen with high-throughput screen-
ing and advances in bioanalytical analysis in a multitude
of biological matrices in both PK and biotransforma-
tion studies.

The ADME scientist of today is fortunate to have an
arsenal of tools at his or her disposal, many of which
will be expanded upon in this book. The advances in
technologies often have implications in adjacent tech-
nologies that further the discipline of drug metabolism
and PK and allow an integrated approach to solving

problems and advancing drug candidates through the
phases of drug development.

Lisa A. SHIPLEY
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PREFACE

Understanding and characterizing absorption, metabo-
lism, distribution, and excretion (ADME) properties of
new chemical entities and drug candidates is an integral
part of drug design and development. ADME is the
discipline that is involved in the entire process of drug
development, right from discovery, lead optimization,
and clinical drug candidate selection through drug
development and regulatory process. The complexity of
ADME studies in drug discovery and development
requires a drug metabolism scientist to know all avail-
able technologies in order to choose the right exp-
erimental approach and technology for solving the
problems in a timely manner. During the last decade,
tremendous progress has been made in wide array of
technologies including mass spectrometry and molecu-
lar biology tools, and these enabling technologies are
widely employed by ADME scientists. The generation
of ADME data to support discovery and development
teams is a gated process and timely generation of data
to make right decisions is of paramount importance.
Given the complexity of the drug discovery and devel-
opment process, right techniques and tools should be
used to generate timely data that is useful for decision
making and regulatory filing. This requires an under-
standing of not only the breadth and depth of ADME
technologies but also their limitation and pitfalls so sci-
entists can make appropriate choices in employing
these tools. A book on integrated enabling technologies
will not only be useful to drug metabolism scientists but
also could be a very helpful reference for scientists from
the fields of pharmacology, medicinal chemistry, phar-
maceutics, toxicology, and bioanalytical sciences in aca-
demia and industry.

This book is divided into four main sections. Part A
provides the reader with an overview of ADME con-

cepts and current topics including ADME and trans-
porter studies in drug discovery and development,
active and toxic metabolites, modeling and simulation,
and developing biologics and individual medicines. Part
B describes the ADME systems and methods; these
include ADME screening technologies, permeability
and transporter studies, distribution across specialized
barriers such as blood-brain barrier (BBB) or placenta,
cytochrome P450 (CYP) inhibition, induction, pheno-
typing, animal models for studying metabolism and
transporters, and bile collection. Part C of the book
discusses analytical tools including liquid chromatogra-
phy-mass spectrometry (LC-MS) technologies for
quantitation, metabolite identification and profiling,
accelerator mass spectrometry (AMS) and radioprofil-
ing, nuclear magnetic resonance (NMR), supercritical
fluid chromatography (SFC) and other separation tech-
niques, mass spectrometric imaging, and quantitative
whole-body autoradiography (QWBA) tissue distribu-
tion techniques. Part D presents new and evolving tech-
nologies such as stem cells, genetically modified animal
models, and siRNA techniques in ADME studies. Other
techniques included in this section are target imaging
technologies, radiosynthesis, formulation, and testing of
cardiovascular toxicity potential.

We would like to thank our colleagues who are the
experts and leading practitioners of the techniques
described in the book for their contributions. We hope
that this book is useful and serves as a quick reference
to all drug hunters and to all those who are new to the
discipline of ADME.

DoNGLU ZHANG
SEKHAR SURAPANENI
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