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Singular Integral Equations' Methods
for the Analysis of Microwave Structures



INTRODUCTION

This book, the result of more than 30 years of research, presents the accumu-
lation of our methods in solving electrodynamical problems. In solving these
problems we have developed unique methods based on the theory of Singular
Integral Equations (SIE) as well as related computer programs, which we used
for numerical analysis.

The subject matter of this book describes the chronological sequence of solv-
ing boundary problems and the numerical investigation of proposed microwave
structures. Particularly concerned here are those developments in passive de-
vices, such as those controllable through magnetic or electric fields as well as
electromagnetic energy transmission lines.

In the early 1970’s theoreticians concentrated their efforts on calculations of
microstrip lines (MSLs) on infinite dielectric lossless substrates with infinitely
thin metal strip conductors of the TEM-approximation (Transverse Electromag-
netic). In the past, solutions of these MSL calculations were limited to one-
dimensional (1D) or two-dimensional (2D) problems, meaning that most prob-
lems could only be solved analytically using conformal mapping. Currently,
however, new computer resources designed specifically for complex three-
dimensional (3D) electrodynamical problems are able to analyze complex prob-
lems such as the electromagnetic field distribution in the human body.

This book will provide many solutions to solving electrodynamical problems.
Beginning with calculating simple striplines by a conformal mapping method in
chapter two and ending with our numerically investigating electrodynamical
characteristics of a heart model that was under microwave radiation. Our SIE
methods created would allow anyone to determine the electrodynamical charac-
teristics of certain 2D or 3D-structures.

To see how one might solve an electrodynamical problem using the SIE
methods we would start with differential equations having a certain “point
source”. Then the fundamental solution to the differential equations is used in
the integral presentation of an electromagnetic field for each electrodynamical
problem that must be solved. This integral presentation would automatically sat-
isfy the differential equations and the density functions would be determined
from the boundary conditions.

The solutions of differential equations, obtained by the SIE method were
electrodynamically rigorous, as they satisfied the differential equations and the
proper boundary conditions. The edge conditions were satisfied due to the inte-
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X Introduction

gral presentation of the solution. The practical applications of the SIE methods
lead to numerical solutions of the well-determined system of the linear equa-
tions that simplified and accelerated the computations. The false roots did not
occur applying our SIE methods. The boundary conditions had to be satisfied
only on the existing surfaces dividing different materials.

Our SIE methods are universal in that: the cross—section shape can be of any
form, the waveguide can be screened or open, the partially homogeneous regions
can be dielectric, anisotropic or gyrotropic. These SIE methods are especially
effective when the 2D~ or 3D-structures have an intricate form and these struc-
tures may even include high lossy materials. What we mean by effective is this,
we are able to decide very complicated problems with the SIE methods that
maybe impossible to solve by other methods.

The SIE methods used to calculate electrodynamical problems enabled us to
develop and optimize a number of the microwave devices. Our SIE methods
were substantiated through the creation of five devises (patented in the former
USSR).

The author’s belief is that the SIE methods described in this book will find
the widest practical application with experts in the field of microwave tech-
niques in medical, industrial and domestic facilities.



PREFACE

Throughout the book we present examples of using SIE methods in calculat-
ing microwave structures. Briefly, in the preface we will present different com-
putation algorithms that were created by our SIE methods. We demonstrate sev-
eral main formulae for electric and magnetic fields that were used in this book.
Expressions of these electric and magnetic fields will be substituted into bound-
ary conditions of certain electrodynamical problems and in this way we will de-
termine the proper solutions. In the following sections we present several SIE
methods.

The problems of electrostatics and magnetostatics (chapters 4-7) and the
solution of Laplace’s equation. In these chapters problems were decided in
TEM-approximation. Here the electrostatic field has the integral representation:

J’,U(t)ds m A
Z k lzk _Z

1)

where z=x,+ jy, is the coordinate of the point when the boundary conditions
are written for an electric field component or when the value of the field compo-
nent is calculated. Here ¢ = x+ jy is the coordinate at the point of contour when

the value of the unknown function z(¢) is found. Here ds = |dt| is the contour arc

element. The unknown values 4(r) and A, are found after applying the bound-
ary conditions. The value z, =x, + jy, is the coordinate of the point inside of
the k —th metal conductor and j is the imaginary unit for the coordinates.

The contours L, and L, separate different media in the cross—section of the
structure (Fig.1), which are arbitrarily divided into segments. Along these seg-
ments the integration is carried out from the lower limit (x“, »Ya;) 1O the upper

u X1

limit (%> Y;) with an index running from 1 to n, +n, . Here n,, is the

number of segments of the contours, which is limited to metal. Then n, is the

number of segments of other contours, which is limited to dielectric, semicon-
ductor, ferrite and other materials.
All the contours separating different media are arbitrarily divided into seg-
ments and they can be equal or unequal in length. The coordinates of the point
i~ (when we formulate the boundary conditions) could be chosen at any place
on the segment but the center of the segment is usually the best choice.
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Xii Preface

Let the structure have in the cross-section several regions bounded by con-
tours L, and L, . Then the boundary conditions have this form:

§+E,T(Z)L =&k, (2), (2)

where the signs “+” and “-* single out the regions on the left and right side of the
contours.

Metal
y /‘,f
.-~~~ & -gyrotropic
- v

‘ ,Dlelectrlc

- M — gyrotropic
v

i=2,j s 2 %/////////////////////////////////
xazayazl,’/ “~Metal L,

Fig. 1. Cross=-section of a strip waveguide line, where L, are contours border-
ing isotropic, anisotropic and gyrotropic media. L, are contours bor-
dering metal conductors and other designations.

For the contours L, bordering the perfect metal, the boundary conditions are
simpler:

E- =0. 3
,(z)Lm 3)

The boundary conditions are formulated for every point "i" when "i"is run-
ning from 1 to n, +n, . Thus the boundary conditions (2) and (3) form the sys-

tem of linear equations of the order n, +n, . The system is not full because the

electric field expression (1) has the unknowns A, and we must add an expres-
sion, which gives the values of the potential of each metal conductor (chapter 5).
Having the solutions /() and A, it is easy to find the electrodynamical charac-
teristics of the MSL (chapters 6-7).

The electrodynamical rigorous solution of Maxwell’s equations to de-
termine the dispersion dependence of the main and higher modes for the
regular waveguides, with a cross-section of arbitrary shapes having partial
homogeneous materials. We solved Helmholtz’s equation in chapter 8. The
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longitudinal components of the electric and magnetic fields are presented in
these integral forms:

E,(A= [ pe)H (kyr)ds, 4@
Le+L,

H (F)= | wyF)HE (k r'ds, (5)
Lo+Ly,

where E, (7), H,(r) are the longitudinal components of the magnetic and electric

fields. Here 7 is the radius vector of the point in the xy plane. Here 7. is the ra-

A

dius vector of the contour point (Fig.2). The unknown functions g, (7,) and

4, (7,) are determined by the boundary conditions. The H(()z) (k. ,r") is the second

kind of Hankel’s function of the zeroth order, where r' =|F-7| and

k, =+k*¢,u, —h* is the transversal wave number.
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Fig. 2. Cross—section of a slot line, where designations are shown.

From Maxwell’s equations, the transversal components H,, H,, E,, E, of

the electromagnetic field can be expressed through two longitudinal compo-
nents. Substituting the formulae (4) and (5) into the expressions for the field
transversal components on the contours bordering isotropic, anisotropic and gy-
rotropic media:

Ef|L=E|L. HY|L=H;[p, (©)
on contours bordering metal conductors:
El|, =0. @)

These terms will contain the Cauchy’s type integrals. These integrals become
singular at r'— 0. We applied Sokhotsky-Plemelj formulae to write singular
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integrals on the contours. The boundary conditions lead to a system of SIE equa-
tions. After applying Bogoliubov-Krylov method we changed the integral equa-
tions into the proper system of linear algebraic equations. Setting the system de-
terminant to zero we get certain dispersion equation that permits us to define
propagation constants % .

The electrodynamical rigorous solution of Maxwell’s equations to de-
termine the dispersion dependence of the main and higher modes for the
regular waveguide with an arbitrary shape of the cross—section having par-
tial homogeneous isotropic, anisotropic and gyrotropic materials. The longi-
tudinal components are presented in these forms (chapter 9)

E,(F) = [, (F)HP (kyor')ds +a [, (7)HS (kyyr'yds
L L

H,(F)= J’ 1y (FOHSP (k r')ds +b j w1, (FYHEP (k5 r')ds . (8)
L L
y y E(F),H(F)
L
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L .
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S~ /\ L &1, 14

r re ,ue,h (Fs )
50 5/‘10
€0-Ho

(@ )

Fig. 3. (a) Cross—section of two coupled & — gyrotropic rods;
(b) designations.

The approach to solving electrodynamical problems for regular waveguides
with arbitrary shapes (Fig.3) having partly homogeneous isotropic, anisotropic,
gyrotropic is the same as was described earlier in the preface. These calculations
enable one to develop and optimize a number of the microwave devices. Also to
propose new constructions of waveguide transmission lines and different devices
on their base.

Solution of Maxwell’s equations by the SIE method for open transver-
sally magnetized gyrotropic waveguides (chapter10). In this chapter, we de-
scribe a new method based on the SIE theory. By this, one is enabled to theoreti-
cally investigate open waveguides of arbitrary (complex) cross—section geome-
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try having transversally magnetized ferrite or semiconductor material. In this
chapter the SIE method yields the solution to the problem in the rigorous elec-
trodynamical formulation. This method enables one to analyze the main and
higher modes propagating in the investigated waveguide.

The electrodynamical rigorous solution of Maxwell’s equations for a 3D
isotropic structure of arbitrary form placed in free space (chapter 11). The
SIE method was verified when we compared our calculations for 3D isotropic
structures with experimental data and with results from science publications.
Also in this chapter we solved certain diffraction problems, which enabled us to
calculate the back scattering cross—section and other electrodynamical character-
istics of different 3D structures (for example Figs.4-6). At the end of this chapter
we determined the electrodynamical characteristics of a biological heart model
that was under the influence of microwaves. The heart model was illuminated by
electromagnetic waves from inside and outside sources.

b2 €, —Si

(@) (%)
Fig. 4. (a) The configuration of a 3D structure, which is illuminated by outside
microwaves; (b ) designations.

This 3D structure Fig.4a is a semiconductor sensor and is one kind of dipole
probe. It has a sensitive element for detecting a microwave electric field. The
sensor is constructed as a symmetric vibrator made of two microstrip conductors
with a semiconductor sample of a cuboid form placed between them.

The 3D structure in Fig.5 is a reflector of microwaves containing two—
microstrip metallic frames. The ratio of the back reflected signal (toward the mi-
crowave source) and the incident microwave field was computed as a function of
the frequency.
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Fig. 5. A structure having a semiconductor—dielectric substrate with
two metallic frames placed on it.

A human heart may be under the influence of microwave radiation in the
medical examination and therapeutic treatment of patients. When this accrues we
can theoretically investigate different electrodynamical characteristics of the
heart.

®) ©

Fig. 6. The model of the heart used in calculations: (a) the surfaces are
approximated by triangles, (b) a view of ventricles and atria,
(c) certain designations.

An electrodynamical accurate solution of Maxwell’s equations based on the
SIE method was used to calculate 3D structures. We investigated 3D heart mod-
els when the source of the electromagnetic fields was inside or outside of the
heart.

One can determine the components of the electromagnetic field inside and
outside of a 3D structure depending on the polarization, wave incidence angle
and the electrophysical parameters of the material. In order to calculate the 3D
structure and electromagnetic waves interaction it is necessary to solve a diffrac-
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tion problem. The known incident electromagnetic wave has components E(7)
and H,y(7), where 7 is the radius vector of a point in which we calculate an

electromagnetic field. When solving electrodynamical problems for these 3D
structures in Figs.4-6 we wanted to find the scattering or transmitted field. And
to present the electromagnetic fields in integral form we used the solutions of
Maxwell’s equations with electric j, and magnetic j, point sources:

rotH = iwe,eE +j,,

rotE = —iweyeH - J, .

These equations are linear when the general solution is taken as a sum of so-
lutions for an electric wave (when j, #0 and j,, =0) and as a sum of solutions
for a magnetic wave (when j, =0 and j, #0).

For the electric E(7) and magnetic A (7) fields the following expressions
were derived:

E(f):jye(a)( . V(ﬁ(a),V)+ﬁ(ﬁ)J hy (2)ds —

kzs,u
—iZO\/g J-/l;,(i-) [ﬁ(ﬁ-),f] h(z)ds ,

1

kzgy

H(f)=fﬂh<a>[ V(ﬁ(%),V)ﬂ‘ﬁ(i)} o (2)ds +

i |
—. = r,) |n(r), F| h(2)d.
Z ,/ﬂ sjue(ro [3().7] by (2)ds s
where £, (z) is a spherical Hankel function of the zeroth order, and the second kind
h(z) = —diho(z) and z=k4/eu F—F_\.l . The wave number k = w/c , where w =27 f
iz

and c=l/ VHogy is the velocity of light in a vacuum. The value

Z, =m ~1207 . Values p,(7,), pm,(7,)are the electric and magnetic source
densities in the point 7, of the surface. Here 7(7) is the unit normal vector to the sur-
face in the same point 7, of the surface. Here ds is an infinitesimal patch of aria with a
direction that is perpendicular to the surface. The expression 7 =(7 -7, )/|F -7 is a
unit vector in the direction from 7 to 7. This symbol V is a vector operator del .
The (ii(7,), V) designation is a dot product and [7 (7 ).#] designation is a cross prod-
uct of two vectors. The densities , (%), u,(7,) will be found from the boundary
conditions for the electric [ﬁ(?,),E(Fl)+]=[ﬁ(Fl), Ei+E(F1)‘:| and magnetic
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[ﬁ(?l ) H(7 )+]= [ﬁ(?,),ﬁi +ﬁ(?1)‘] fields on the boundary surfaces, where 7 — 7,
(7 1is a radius vector of a point on the boundary surfaces). These SIE methods

can be used to analyse the electrodynamical characteristics of different biologi-
cal organ models and can be applied to 3D object of any shape or size.
We would like to draw the reader’s attention to the fact that value u(t;) takes

two values for every point *j”’. The value ,u(t ) depends on whether the point is

nearing the contour from its left or right side (chapters 8-11). For example (Fig.7):

b
E:) =% w () JHP (ka1 ) as
J a_,»
bj
ELG) =3 w () [HP (ko -7, |) s
j

4aj

on the contour which separate media.
But in electrostatic and magnetostatic problems the values of u(¢) on the right

and left contour sides are equal u* ()=~ (7).

u(r ;)

| J\ @

#(r

Fig. 7. Designations used in the expressions for the field components.

We have attempted to show some essential points in this preface, which
would enable the reader to comprehend our SIE methods and the great diversity
in which they can be used. We know that our SIE methods of calculating prob-
lems will be extremely helpful in investigating and designing new and unique
microwave devices for the future.
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