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Preface

ONE OF Dr. Good’s very first statistical applications was an analysis of
leukemia cases in Hiroshima, Japan after World War II; on August 7, 1945
this city was the target site of the first atomic bomb dropped by the
United States. Was the high incidence of leukemia cases among survivors
the result of exposure to radiation from the atomic bomb? Was there a
relationship between the number of leukemia cases and the number of sur-
vivors at certain distances from the atomic bomb’s epicenter?

To assist in the analysis, Dr. Good had an electric (not an electronic)
calculator, reams of paper on which to write down intermediate results,
and a prepublication copy of Schefté’s Analysis of Variance. The work took
several months, and the results were somewhat inclusive, mainly because
he could never seem to get the same answer twice—a consequence of
errors in transcription rather than the absence of any actual relationship
between radiation and leukemia.

Today, of course, we have high-speed computers and prepackaged statis-
tical routines to perform necessary calculations. Yet access to statistical
software will no more make one a statistician, than access to a chainsaw
will make one a lumberjack. Allowing these tools to do our thinking for us
is a sure recipe for disaster—just ask any emergency room physician.

Pressed by management or by funding needs, too many research
workers have no choice but to go forward with data analysis regardless of
the extent of their statistical training. Alas, although a semester or two of
undergraduate statistics may suffice to develop familiarity with the names
of some statistical methods, it is not enough to ensure awareness of all the
circumstances under which these methods may be applicable.

The purpose of the present text is to provide a mathematically rigorous
but readily understandable foundation for statistical procedures. Here for
the second time are such basic statistical concepts as null and alternative
hypotheses, p-value, significance level, and power. Reprints from the statis-
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tical literature provide illustration as we reexamine sample selection, linear
regression, the analysis of variance, maximum likelihood, Bayes’ theorem,
meta-analysis and the bootstrap.

For the second edition, we’ve added material from online courses we
offer at statistics.com. This new material is devoted to unbalanced designs,
report interpretation, and alternative modeling methods.

More good news for technophobes: Dr. Good’s articles on women’s
sports have appeared in the San Francisco Examiner, Sports Now, and Vol-
leyball Monthly, Twenty-two of his short stories are also in print. If you
can read the sports page, you’ll find the presentation of material in this
text easy to read and to follow. Lest the statisticians among you believe
this book is too introductory, we point out the existence of hundreds of
citations in statistical literature calling for the comprehensive treatment we
have provided. Regardless of past training or current specialization, this
book will serve as a useful reference; you will find applications for the
information contained herein whether you are a practicing statistician or a
well-trained scientist who just happens to apply statistics in the pursuit of
other science.

The primary objective of the opening chapter is to describe the main
sources of error and provide a preliminary prescription for avoiding them.
The hypothesis formulation—data gathering—hypothesis testing and esti-
mate cycle is introduced, and the rationale for gathering additional data
before attempting to test after-the-fact hypotheses is detailed.

Chapter 2 places our work in the context of decision theory. We empha-
size the importance of providing an interpretation of each and every
potential outcome in advance of consideration of actual data.

Chapter 3 focuses on study design and data collection, for failure at the
planning stage can render all further efforts valueless. The work of Berger
and his colleagues on selection bias is given particular emphasis.

Desirable features of point and interval estimates are detailed in Chapter
4 along with procedures for deriving estimates in a variety of practical situ-
ations. This chapter also serves to debunk several myths surrounding esti-
mation procedures.

Chapter 5 reexamines the assumptions underlying testing hypotheses.
We review the impacts of violations of assumptions and detail the proce-
dures to follow when making 2- and k-sample comparisons. In addition,
we cover the procedures for analyzing contingency tables and 2-way
experimental designs if standard assumptions are violated.

Chapter 6 is devoted to the value and limitations of Bayes’ theorem,
meta-analysis, and resampling methods.

Chapter 7 lists the essentials of any report that will utilize statistics,
debunks the myth of the “standard” error, and describes the value and
limitations of p-values and confidence intervals for reporting results. Prac-
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tical significance is distinguished from statistical significance and induction
is distinguished from deduction. Chapter 8 covers much the same mater-
ial, but the viewpoint is that of the report reader rather than the report
writer. Of particular importance is a section on interpreting computer
output.

Twelve rules for more effective graphic presentations are given in
Chapter 9 along with numerous examples of the right and wrong ways
to maintain reader interest while communicating essential statistical
information.

Chapters 10 through 13 are devoted to model building and to the
assumptions and limitations of a multitude of regression methods and data
mining techniques. A distinction is drawn between goodness of fit and
prediction, and the importance of model validation is emphasized. Seminal
articles by David Freedman and Gail Gong are reprinted.

Finally, for the further convenience of readers, we provide a glossary
grouped by related but contrasting terms, an annotated bibliography, and
subject and author indexes.

Our thanks to William Anderson, Leonardo Auslender, Vance Berger,
Peter Bruce, Bernard Choi, Tony DuSoir, Cliff Lunneborg, Mona Hardin,
Gunter Hartel, Fortunato Pesarin, Henrik Schmiediche, Marjorie Stine-
spring, and Peter A. Wright for their critical reviews of portions of this
text. Doug Altman, Mark Hearnden, Elaine Hand, and David Parkhurst
gave us a running start with their bibliographies. Brian Cade, David
Rhodes, and, once again, Cliff Lunneborg helped us complete the second
edition.

We hope you soon put this text to practical use.

Sincerely yours,

Phillip Good
brother_unknown@yahoo.com
Huntington Beach CA.

James Hardin
jhardin@gwm . sc.edu
Columbia, SC.

July 2003 /2005
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Chapter 1
Sources of Error

STATISTICAL PROCEDURES FOR HYPOTHESIS TESTING, ESTIMATION, AND MODEL
building are only a part of the decision-making process. They should
never be quoted as the sole basis for making a decision (yes, even those
procedures that are based on a solid deductive mathematical foundation).
As philosophers have known for centuries, extrapolation from a sample or
samples to a larger incompletely examined population must entail a leap
of faith.

The sources of error in applying statistical procedures are legion and
include all of the following:

e Using the same set of data both to formulate hypotheses and to
test them

e Taking samples from the wrong population or failing to specify
the population(s) about which inferences are to be made in
advance

e Failing to draw random, representative samples

® Measuring the wrong variables or failing to measure what you’d
hoped to measure

¢ Using inappropriate or inefficient statistical methods

* Failing to validate models

But perhaps the most serious source of error lies in letting statistical
procedures make decisions for you.

In this chapter, as throughout this text, we offer first a preventive pre-
scription, followed by a list of common errors. If these prescriptions are
followed carefully, you will be guided to the correct, proper, and effective
use of statistics and avoid the pitfalls.

Common Errors in Statistics (and How to Avoid Them), 2e, by Phillip 1. Good and James W. Hardin.
Copyright © 2006 John Wiley & Sons, Inc.
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PRESCRIPTION

Statistical methods used for experimental design and analysis should be
viewed in their rightful role as merely a part, albeit an essential part, of the
decision-making procedure.

Here is a partal prescription for the error-free application of statistics.

1.

Set forth your objectives and the use you plan to make of your
research before you conduct a laboratory experiment, a clinical
trial, or survey or analyze an existing set of data.

. Define the population to which you will apply the results of your

analysis.

. List all possible sources of variation. Control them or measure

them to avoid their being confounded with relationships among
those items that are of primary interest.

. Formulate your hypothesis and all of the associated alternatives.

(See Chapter 2.) List possible experimental findings along with the
conclusions you would draw and the actions you would take if
this or another result should prove to be the case. Do all of these
things before you complete a single data collection form, and before
you turn on your computer.

. Describe in detail how you intend to draw a representative sample

from the population. (See Chapter 3.)

. Use estimators that are impartial, consistent, efficient, robust, and

minimum loss. (See Chapter 4.) To improve results, focus on suffi-
cient statistics pivotal statistics, and admissible statistics, and use
interval estimates. (See Chapters 4 and 5.)

. Know the assumptions that underlie the tests you use. Use

those tests that require the minimum of assumptions and are
most powerful against the alternatives of interest. (See
Chapter 5.)

. Incorporate in your reports the complete details of how the

sample was drawn and describe the population from which it was
drawn. If data are missing or the sampling plan was not followed,
explain why and list all differences between data that were present
in the sample and data that were missing or excluded. (See
Chapter 7.)

FUNDAMENTAL CONCEPTS

Three concepts are fundamental to the design of experiments and surveys:

variation, population, and sample.

A thorough understanding of these concepts will forestall many errors in

the collection and interpretation of data.

If there were no variation, if every observation were predictable, a mere
repetition of what had gone before, there would be no need for

statistics.
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Variation

Variation is inherent in virtually all our observations. We would not expect
outcomes of two consecutive spins of a roulette wheel to be identical. One
result might be red, the other black. The outcome varies from spin to
spin.

There are gamblers who watch and record the spins of a single roulette
wheel hour after hour, hoping to discern a pattern. A roulette wheel is,
after all, a mechanical device, and perhaps a pattern will emerge. But even
those observers do not anticipate finding a pattern that is 100% determin-
istic. The outcomes are just too variable.

Anyone who spends time in a schoolroom, as a parent or as a child, can
see the vast differences among individuals. This one is tall, today, that one
short. Half an aspirin and Dr. Good’s headache is gone, but his wife
requires four times that dosage for relief.

There is variability even among observations on deterministic formula-
satisfying phenomena such as the position of a planet in space or the
volume of gas at a given temperature and pressure. Position and volume
satisty Kepler’s laws and Boyle’s law, respectively, but the observations we
collect will depend on the measuring instrument (which may be affected
by the surrounding environment) and the observer. Cut a length of
string and measure it three times. Do you record the same length each
time?

In designing an experiment or survey we must always consider the
possibility of errors arising from the measuring instrument and from the
observer. It is one of the wonders of science that Kepler was able to for-
mulate his laws given the relatively crude instruments at his disposal.

Population

The population(s) of interest must be clearly defined before we begin to
gather data.

From time to time, someone will ask us how to generate confidence inter-
vals (see Chapter 7) for the statistics arising from a total census of a popu-
lation. Our answer is no, we cannot help. Population statistics (mean,
median, 30th percentile) are not estimates. They are fixed values and will
be known with 100% accuracy if two criteria are fulfilled:

1. Every member of the population is observed.

2. All the observations are recorded correctly.

Confidence intervals would be appropriate if the first criterion is vio-
lated, for then we are looking at a sample, not a population. And if the
second criterion is violated, then we might want to talk about the confi-
dence we have in our measurements.

CHAPTER 1 SOURCES OF ERROR 5



Debates about the accuracy of the 2000 United States Census arose
from doubts about the fulfillment of these criteria.! “You didn’t count the
homeless,” was one challenge. “You didn’t verify the answers,” was
another. Whether we collect data from a sample or an entire population,
equivalents of both of the previously mentioned challenges can and should
be made.

Kepler’s “laws” of planetary movement are not testable by statistical
means when applied to the original planets (Jupiter, Mars, Mercury, and
Venus) for which they were formulated. But when we make statements
such as “Planets that revolve around Alpha Centauri will also follow
Kepler’s laws,” then we begin to view our original population, the planets
of our sun, as a sample of all possible planets in all possible solar systems.

A major problem with many studies is that the population of interest is
not adequately defined before the sample is drawn. Don’t make this
mistake. A second major source of error is that the sample proves to have
been drawn from a different population than was originally envisioned. We
consider this problem in the next section and again in Chapters 2, 5,
and 6.

Sample
A sample is any (proper) subset of a population.

Small samples may give a distorted view of the population. For example,
if a minority group comprises 10% or less of a population, a jury of 12
persons selected at random from that population fails to contain any
members of that minority at least 28% of the time.

As a sample grows larger, or as we combine more clusters within a
single sample, the sample will grow to more closely resemble the popula-
tion from which it is drawn.

How large a sample must be to obtain a sufficient degree of closeness
will depend on the manner in which the sample is chosen from the popu-
lation. Are the elements of the sample drawn at random, so that each unit
in the population has an equal probability of being selected? Are the
elements of the sample drawn independently of one another?

If either of these criteria is not satisfied, then even a very large sample
may bear little or no relation to the population from which it was drawn.

An obvious example is the use of recruits from a Marine boot camp as
representatives of the population as a whole or even as representatives of
all Marines. In fact, any group or cluster of individuals who live, work,

' City of New York v. Department of Commerce, 822 F. Supp. 906 (E.D.N.Y, 1993). The
arguments of four statistical experts who testified in the case may be found in Volume 34 of
Jurimetrics, 1993, 64-115.
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study, or pray together may fail to be representative for any or all of the
following reasons (Cummings and Koepsell, 2002):

1. Shared exposure to the same physical or social environment

2. Self-selection in belonging to the group

3. Sharing of behaviors, ideas, or diseases among members of the
group

A sample consisting of the first few animals to be removed from a cage
will not satisfy these criteria either, because, depending on how we grab,
we are more likely to select more active or more passive animals. Activity
tends to be associated with higher levels of corticosteroids, and corticos-
teroids are associated with virtually every body function.

Sample bias is a danger in every research field. For example, Bothun
(1998) documents the many factors that can bias sample selection in
astronomical research.

To forestall sample bias in your studies, determine before you begin the
factors that can affect the study outcome (gender and lifestyle, for
example). Subdivide the population into strata (males, females, city
dwellers, farmers) and then draw separate samples from each stratum.
Ideally, you would assign a random number to each member of the
stratum and let a computer’s random number generator determine which
members are to be included in the sample.

Surveys and Long-Term Studies

Being selected at random does not mean that an individual will be willing
to participate in a public opinion poll or some other survey. But if survey
results are to be representative of the population at large, then pollsters
must find some way to interview nonresponders as well. This difficulty is
only exacerbated in long-term studies, as subjects fail to return for follow-
up appointments and move without leaving a forwarding address. Again, if
the sample results are to be representative, some way must be found to
report on subsamples of the nonresponders (those who never participate)
and the dropouts (those who stop participating at some point).

AD HOC, POST HOC HYPOTHESES

Formulate and write down your hypotheses before you examine the data.

Patterns in data can suggest, but cannot confirm, hypotheses unless these
hypotheses were formulated &efore the data were collected.

Everywhere we look, there are patterns. In fact, the harder we look
the more patterns we see. Three rock stars die in a given year. Fold the
United States twenty-dollar bill in just the right way and not only the
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