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Korza pasapouca Xaoc

1o KopHs B3ABIOIEHHBIX BOJIOC,
Bsopsasca Cunrynapuit-Konyc

U1 navan 6er Becénbiit XpoHoc,
Exunna 3nas1, uTponus,

Crmtena MOKpOBLI POKOBHIE.
Pomumucy Cmeprb, Pacnan u Tien.
Bacroit u Mpak 6e3 nepemen.

Ho /len» BpamaHna y»k Ha CKJIOHe,
'panér, 6penér Bpamana Houn,
KopoBa /IxapMbl HO'H KJIOHUT,
He B cunax npémy npeBo3moub.
OnycTomEHHBIR, MUD YHBLIBIH
Ycrano 3aBepuaeT Kpyr,

M Xponoc 3amupaer BIPYT,
Xaoc urpaer HOBOH CHJION.

N 2Kusup u CMepTh,

U Mpak u Thnes,

B kpyroBopoTe nepemMes.

KBanracmarop
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On the artistic and poetic fragments of the book

It is evident to us that the way of writing a mathematical treatise in a mo-
notonous logically-didactic manner subsumed in the contemporary world is very
harmful and belittles the greatness of Mathematics, which is authentic basis of the
Transcendental Being of Universe.

Everyone touched by Mathematical Creativity knows that Images, Words,
Sounds, and Colours fly above the ocean of logic in the process of exploration, con-
stituting the real body of concepts, theorems, and proofs. But all this abundance
disappears and, alas, does so tracelessly for the reader of a modern mathematical
treatise.

Therefore the attempts at attracting a reader to this majestic Irrationality
appear to be natural and justified.

Thus the inclusion of poetic inscriptions into mathematical works has already
(and long ago) been used by different authors. Attempts to draw (not to illustrate
only) Mathematics is already habitual amongst intellectuals. In this connection let
us note the remarkable pathological-topological-anatomical graphics of the Moscow
topologist A.T. Fomenko.

In our treatise we also make use of graphics and drawings (mental images-faces
of super-mathematical reality, created by sweet dreams of mirages of pure logic )
and words (poetic inscriptions) which Eternity whispered during our aspirations
to learn the beauty of Irrationality.

The reader should not search for any direct relations between our artistic poetic
substance and certain parts and sections of the treatise. It is to be considered as
some general super-mathematical-philosophical body of the treatise as a whole.

Lev Sabinin
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INTRODUCTION

Cdepounn menyieHHO BpalaJics
CMeTasi COHMBI CTpaHHbIX Ync...
Mupsl, Beka, kaTunucy BHU3

N nuk TBopua ob6o3Ha4vasCs.

Ctpemsicb IOCTUTHYTh TaNHBIH CMBICI
CMmeTeHbs1 CTOHOB CTpaHHbIX Huci,
3HAYKOB NMPUYYJIUBBINA AJIbSIHC,

A morpyxascs B connbit Tpasnc.
I'pumaccer 2Kytb u Bonu CMbic

Ha nuuax npouyutan s Yuco.

KBanTacmarop
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INTRODUCTION

As K. Nomizu has justly noted [K. Nomizu, 56], Differential Geometry ever will
be initiating newer and newer aspects of the theory of Lie groups. This monograph
is devoted to just some such aspects of Lie groups and Lie algebras.

New differential geometric problems came into being in connection with so called
subsymmetric spaces, subsymmetries, and mirrors introduced in our works dating
back to 1957 [L.V. Sabinin, 58a,59a,59b].

In addition, the exploration of mirrors and systems of mirrors is of interest in the
case of symmetric spaces. Geometrically, the most rich in content there appeared
to be the homogeneous Riemannian spaces with systems of mirrors generated by
commuting subsymmetries, in particular, so called tri-symmetric spaces introduced
in [L.V. Sabinin, 61b].

As to the concrete geometric problem which needs be solved and which is solved
in this monograph, we indicate, for example, the problem of the classification of
all tri-symmetric spaces with simple compact groups of motions.

Passing from groups and subgroups connected with mirrors and subsymmetries
to the corresponding Lie algebras and subalgebras leads to an important new
concept of the involutive sum of Lie algebras [L.V. Sabinin, 65].

This concept is directly concerned with unitary symmetry of elementary parti-
cles (see [L.V. Sabinin, 95,85] and Appendix 1).

The first examples of involutive (even iso-involutive) sums appeared in the ex-
ploration of homogeneous Riemannian spaces with ds? > 0 and axial symmetry.
The consideration of spaces with (n — 1)-dimensional mirrors [L.V. Sabinin, 59b]
again led to iso-involutive sums.

The construction of the so called hyper-involutive decomposition (sum) can be
dated back to 1960-62, see, for example, the short presentation of our report at
the International Congress of Mathematicians (1962, Stockholm) in volume 13
of Transactions of the Seminar on Vector and Tensor Analysis (1966, Moscow
University) and [L.V. Sabinin, 67].

Furthermore, a very important heuristic role was played by the work of Shirokov
[P.A. Shirokov, 57], in which the algebraic structure of the curvature tensor of
the symmetric space SU(n + 1)/U(n) was given, and by the work of Rosenfeld
[B.A. Rosenfeld 57]. That allowed us to construct characteristic iso-involutive
decompositions for all classical Lie algebras [L.V. Sabinin, 65, 68].

In this way the apparatus for direct exploration of symmetric spaces of rank 1
with compact Lie groups of motions was introduced (avoiding the well known indi-
rect approach connected with the Root Method and the examination of E. Cartan’s
list of all symmetric spaces with compact simple Lie groups of motions).

xi



xii LEV SABININ

The most difficult, certainly, and fundamental element of the suggested theory
was the understanding (1966) of the role of principal unitary and special unitary
automorphisms of Lie groups and Lie algebras [L.V. Sabinin, 67,69,70]. The above
work solved the problem of introducing the ‘standard’ mirrors into a homogeneous
Riemannian space with ds? > 0.

Indeed, in this case the stationary subgroup is compact and, taking its principal
unitary involutive automorphism (which is possible, except for trivial subcases), we
can generate a ‘standard’ subsymmetry and a ‘standard’ mirror in a Riemannian
space. Analogously, one can introduce systems of ‘standard’ mirrors in a Rie-
mannian space with ds? > 0 and, furthermore, with their help, explore geometric
properties of homogeneous Riemannian spaces.

The detailed consideration of involutive sums of Lie algebras has shown, how-
ever, that their role is more significant than the role of the only convenient auxiliary
apparatus for solving some differential-geometric problems. We may talk about
the theory of independent interest and it is natural to call it ‘Mirror geometry of
Lie algebras’, or ‘Mirror calculus’; the role and significance of which is comparable
with the role and significance of the well known ‘Root Method’ in the theory of
Lie algebras.

Part I and II of this treatise are devoted to the presentation of Mirror Geometry
over the reals.

A Lie algebra g has the group of automorphisms Aut(g) and consequently gen-
erates the geometry in the sense of F. Klein. In the case of a semi-simple compact
Lie algebra g the group Int(g) C Aut(g) is a compact linear Lie group, which allows
us to use some knowledge from the theory of compact Lie groups (however, we
need not too much from that theory, and necessary results can be proved without
the above theory). We may regard Cartan’s theorem on the existence of non-
trivial inner involutive automorphism of a simple compact non-one-dimensional
Lie algebra as the typical theorem of the Lie algebras geometry (the proof follows
immediately from the existence of non-trivial involutive elements in Int(g)).

In an ordinary Euclidean space a plane can be defined as a set of all points
immobile under the action of some involutive automorphism. Thus the maximal
subset of elements immobile under the action of an involutive automorphism, that
is, some involutive subalgebra [ C g in a compact Lie algebra, may be regarded as
an analogue of a plane in an Euclidean space.

Let us now consider the problem of a canonical base of a compact Lie algebra.
From the point of view of Classical Invariants’ theory the problem of the classifica-
tion of Lie algebras is connected with the finding of a base in which the structure
tensor has a sufficiently simple form (canonical form).

In order to clarify what has just been said, let us consider a simple problem of
that kind, namely, the problem of a canonical form for a bilinear form in a centered-
Euclidean space. As is easily seen, here the determination of a canonical base is
reduced to the finding of commuting isometric involutive automorphisms and the
subsequent choice of a base in such a way that the above involutive automorphisms
have the basis vectors as proper vectors. For this it is enough to find the ‘standard’
involutive automorphisms (for example, connected with reflections with respect to
hyperplanes) of that type; other involutive automorphisms can be obtained as
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products of the ‘standard’ involutive automorphisms.

Any two commuting ‘standard’ involutive automorphisms S;, S, generate the
third automorphism S3 = S;S; = S35; (non-standard, in general) and conse-
quently a discrete commutative group {Id, Sy, S, Sz}, the so called involutive
group x(S1, Sz, S3).

Returning to a compact Lie algebra g we see that the construction described
above is valid here, and in a natural way we have the notion of involutive group
X(Sl ’ 527 83) c AUt(g)

The only problem in the consideration presented above is to introduce, reason-
ably, the ‘standard’ involutive automorphisms for any compact semi-simple Lie
algebra.

With any involutive group x(S1, Sz, S3) of a Lie algebra g one may associate in
a natural way the decomposition

g=h+hL+I3, hNlb=LNE=ENL =1,

where [, [, [3 are involutive algebras of the involutive automorphisms S, S, S3,
respectively, (Io = {C € g | So¢ = (}). This is a so called involutive decomposition
(involutive sum). As well, one can introduce the corresponding involutive base
(in fact, a set of involutive bases) whose vectors are proper vectors for Si,S2, S3 .
Thus if we are interested in a canonical base of the Lie algebra g then it is an
involutive base of some involutive group.

Among involutive groups x(Si,S2,S3) one may select two special classes,
namely: iso-involutive groups, x(Si, Ss,S3;¢), where S; and Sy are conjugated
by ¢ € Autg, ¢* = S3, and hyper-involutive groups, x(S1, Sz, S3;p), where S;
and Sy, S; and S3, S3 and S; are conjugated by p € Autg. They generate,
respectively, iso-involutive sums, iso-involutive bases and hyper-involutive sums,
hyper-involutive bases.

We show that any arbitrarily taken non-trivial simple compact Lie algebra
g (dimg # 1) with an involutive automorphism S; has iso-involutive groups
x (51, S2, S3; ).

This result turns iso-involutive sums into an instrument of exploration of Lie
algebras.

Hyper-involutive sums are not universal to the same extent, but in appropriate
cases serve also as an effective apparatus of investigation. One sufficient condition
for the existence of hyper-involutive sums for a simple compact Lie algebra g is:
there exists a three-dimensional simple subalgebra b C g such that the restriction
Intgb of Intg to b is isomorphic to SO(3).

Now we pass to the problem of determination of ‘standard’ involutive automor-
phisms of a simple compact Lie algebra g (dimg # 1).

An involutive algebra [ C g (and the corresponding involutive automorphism S )
is called principal if it contains a simple three-dimensional ideal b, that is, [ = b& 1.
In this case, if Intg(b) = SO(3) then we say that [ (and S) is principal orthogonal
and if Inty(b) = SU(2) then we say that [ (and S) is principal unitary.

By means of involutive decompositions we prove the main theorem: any simple
compact Lie algebra g (dimg # 1) has a non-trivial principal involutive auto-
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morphism. If dimg # 3 then g has a non-trivial principal unitary involutive
automorphism.

This solves the problem of introducing ‘standard’ involutive automorphisms
which may be regarded as principal.

One may introduce also the broader class of special involutive algebras and
involutive automorphisms, in particular, the unitary special involutive algebras
and involutive automorphisms.

We give, furthermore, the simple classification of principal unitary involutive
automorphisms: principal di-unitary, principal unitary central, principal unitary of
index 1, exceptional principal unitary. Using the apparatus of involutive sums and
involutive bases we explore all these types. As a result the type of principal uni-
tary involutive automorphism defines, in general, the type of simple compact Lie
algebra. For example, if a simple compact Lie algebra has a principal unitary non-
central involutive automorphism of index 1 then g is isomorphic to sp(n), n > 1.
For the Lie algebra g, the construction is presented in a hyper-involutive base up
to the numerical values of structural constants, that is, the problem is completely
solved in the sense of the classical theory of invariants. For other types of excep-
tional Lie algebras we determine the basis involutive sums and the structure of
their involutive algebras.

Furthermore, we consider the problem of the classification of special unitary
non-principal involutive authomorphisms. The principle of the involutive duality
of principal unitary and special unitary non-principal involutive automorphisms is
established. This principle allows us to define all special simple unitary subalgebras
and all special unitary involutive automorphisms for simple compact Lie algebras.

For all simple compact Lie algebras g (dimg # 1), except

so(3) = su(2) = sp(1), so(5) = sp(2), su(3),
so(6) = su(4), so(7), so(8), g2,

we construct the basis iso-involutive decomposition g = [; + 13+ (3, where [; and [
are principal unitary involutive Lie algebras and [3 is a special unitary involutive
Lie algebra. By the type of such involutive sum the type of g is uniquely defined.
For each of the Lie algebras which have been excluded above we construct the
basis hyper-involutive decomposition which uniquely characterizes any of them.

Furthermore, for simple compact Lie algebras we consider the possibility of con-
structing hyper-involutive sums with principal unitary involutive automorphisms.

Using the procedure of involutive reconstruction of basis involutive sums we
prove that principal unitary hyper-involutive sums exist and are unique for Lie
algebras so(n) (n > 5), su(n) (n > 2), f4, ¢, e7, eg (all these involutive sums
are found) and do not exist for sp(n).

It is shown that for sp(n) (n > 2) one can construct hyper-involutive sums
with special unitary involutive algebras. An analogous construction is valid for
so(n) (n > 8), su(n) (n > 4), f4, e, e7, eg. All such involutive sums are found
as well.

Thus the suggested theory is a theory of structures of a new type for compact
real Lie algebras and is related to discrete involutive groups of automorphisms and
the corresponding involutive decompositions.
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Let us now turn to possible geometric applications, which, in particular, may
be found in Part III and IV.

First of all we note that since we deal with involutive automorphisms, all,
or almost all, proved results may be reformulated in terms of symmetric spaces
[E. Cartan, 49,52], [B.A. Rosenfeld, 57, [ L.V. Sabinin, 59¢], [S. Helgason, 62,78],
[A.P. Shirokov, 57] and in terms of mirrors in homogeneous spaces.

Such applications are concentrated at the beginning of Part III after some nec-
essary definitions. Despite that here many results have been obtained simply as
a reformulation of theorems of Part I and II from the language of Lie algebras
into the language of Lie groups, homogeneous spaces, and mirrors, those are very
interesting. (For example, the characterization of symmetric spaces of rank 1 by
the properties of geodesic mirrors.)

In addition, the theory of Part I and II implies two new interesting types of
symmetric spaces—principal and special—and allows us to explore geometric prop-
erties of their mirrors.

Furthermore, in Section II1.5 we consider applications of Mirror Geometry to
some problems of simple compact Lie groups. Thus it is shown that Int(gs) and
Int(f4) are the only simple compact connected Lie groups of types G, and Fy,
respectively.

Moreover, it is shown how, knowing involutive decompositions for simple com-
pact Lie algebras, one may find out their inner involutive automorphisms (in the
cases of g, f4, €6, eg).

Lastly, the final sections of Part III (III.6-II1.8) are devoted to the complete
classification of tri-symmetric spaces with a simple compact Lie group of motions.
The solution of this problem, when treated by conventional methods, had serious
difficulties. Indeed, the first part of this problem, the definition of involutive groups
{I1d, Sy, S2,S3} of automorphisms, is already not trivial. Since, even if all S, are
inner automorphisms, they can not be generated by a one Cartan subgroup, it is
necessary to bring into consideration the normalizers of maximal tori ([Seminar
Sophus Lie, 62] Ch. 20). But the determination of normalizers of maximal tori
in exceptional simple compact Lie groups is a complicated problem owing to the
absence of good matrix models. However, the theory developed in Part I and II
gives a natural apparatus for solving the above problem.

The classification shows, in particular, that all non-trivial non-symmetric tri-
symmetric spaces have isomorphic basis mirrors (in hyper-symmetric decompo-
sition) and have irreducible Lie groups of motions if they are maximal. Their
mirrors possess remarkable geometric properties being either principal or central.
In this relation we note that in [O.V. Manturov, 66] two spaces, G/SU(3) and
E;/F4 x SO(3), with irreducible groups of motions have not been found.

The results of Part II belong to the area in which strong methods and detailed
theories existed earlier. Therefore we naturally need some comparisons.

The theory of compact Lie algebras has been established mainly by the work of
Lie [S. Lie, 1888,1890,1893], Killing [W. Killing, 1888,1889a,1889b,1890], E. Cartan
[E. Cartan, 49,52], H. Weyl [H. Weyl, 25, 26a,b,c, 47], Van der Warden [B.L. Van
der Warden 33], Dynkin [E.B. Dynkin, 47], Gantmacher [Gantmacher 39a,b] etc.,
and is well known.
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We now intend to compare the well known ‘Root Method’ with our new theory,
which we briefly call ‘Mirror Geometry’.

First of all, Mirror Geometry deals with new types of structures (involutive
sums) and is introduced independently of the Root Method. Thus these two theo-
ries seem to be different. But since Mirror Geometry leads us to the classification
of simple compact Lie algebras (through the classification of principal unitary
involutive automorphisms) we need some comparisons.

The Root Method has a complex nature and the classification of real simple
compact Lie algebras require the supplementary theory (the theory of real forms).
Mirror Geometry has a real nature.

The determination of involutive automorphisms of Lie algebras in the Root
Method requires a supplementary theory. In Mirror Geometry, owing to the con-
struction, any type of simple compact Lie algebra appears together with two (gen-
erally speaking) involutive automorphisms, principal unitary and its dual, special
unitary. This is of importance for exceptional Lie algebras (for example, in the
case of f4 there are no other involutive automorphisms).

The Root Method gives the description of a compact simple Lie algebra by the
type of root system which is a rather complicated invariant of a Lie algebra.

Mirror Geometry gives the description of a compact simple Lie algebra by the
type of principal unitary involutive automorphism being a simple algebraic-geo-
metric characteristic of a Lie algebra.

The Root Method does not give a classification of simple compact Lie algebras in
the sense of the Invariant Theory, that is, does not give the method of construction
of a canonical base: there the problem of classification is solved by the ‘guessing’
of a concrete Lie algebra with an admissible root system.

Mirror Geometry is, in essence, the method of determination of a canonical base
in a Lie algebra.

The problems in applications to tri-symmetric spaces of rank 1, for example, can
be solved in the ‘Root Method’ by the observation of all possibilities of the list of
E. Cartan. Mirror Geometry gives a direct approach to symmetric spaces of rank
1, avoiding the general classification. Moreover, any theorem of Mirror Geometry
is a theorem of the theory of symmetric spaces (after some trivial reformulation).
This is not valid for the Root Method.

The Root Method is not effective in the theory of homogeneous Riemannian
spaces with mirrors (that is, all cases of homogeneous Riemannian spaces with
ds? > 0 and non-trivial isotropy group). Mirror Geometry gives in this case the
system of standard mirrors.

Of course, there are some problems when the possibilities of the Root Method
are obviously effective but the possibilities of Mirror Geometry are not yet evident
enough. Perhaps, here we need more systematic development in the future.

One may ask whether Mirror Geometry can be obtained from the Root Method.
The simple example of an iso-involutive sum of index 1 and of type 1 for a simple
compact Lie algebra demonstrates that Mirror Geometry and the Root Method
are in some sense opposite. Indeed, the constructions of the Root Method depend
on ‘regular vectors’, whereas in the above example the conjugating automorphism
is generated by a singular vector.



