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Preface

In his first paper [35] on the theory of hyperfunctions, M. Sato treated the Fourier
expansion of hyperfunctions on the unit circle in connection with the Laurent ex-
pansion at the origin of the complex plane.

The characterization of spherical harmonic expansion of hyperfunctions on the
sphere S" = {z € R"*}2% = 22 + 3 + --- + 22, = 1} was first obtained by
Hashizume-Minemura-Okamoto [7]. Their methods rely on the characterization
of real analytic functions by means of the Laplace-Beltrami operator (see Lions-
Magenes [16] and Seeley [37]) and can be applied not only to the sphere but also
to a general compact real analytic manifold. But their methods are far from the
complex analysis that Sato employed in the case of the one-dimensional sphere,
that is, the circle.

In this book, we shall construct a complex neighborhood §™(r) of the sphere
S™ by means of . the Lie norm. The complex neighborhood S» (r) is a direct gener-
alization of the annular neighborhood {z € C; 1 < |2| < r} of the circle and allows
us a complex analysis approach to the theory of spherical harmonic expansion.

Let us overview the monograph chapter by chapter.

In Chapter 1, we recall, as a motivation for later chapters, some facts on Fourier
expansion of real analytic functions, C*° functions, distributions, and hyperfunc-
tions on the circle. These materials are well-known to a specialist but students may
find them useful.

Our first tool for studying the higher-dimensional sphere is, of course, the
classical theory of spherical harmonics. Following mainly Miiller [33] and referring
also to Vilenkin [43] and to Stein-Weiss [41], we present it in Chapter 2 with
detailed calculation. (Recently another related book was published by Miiller [34].)
We also state the characterization of C* functions and distributions on S™ by the
growth condition of their spherical harmonic expansion. In §2.8 and §2.9 we study
the Poisson formula which represents the unique harmonic function in the unit ball
having a given continuous boundary value on the sphere S™.

Our second tool is the cross norm, which is presented in the first two sections
of Chapter 3 according to Druzkowski [1]. The Lie norm L(z) on C**! is the cross
norm of the Euclidean norm on R"*! and is powerful enough to estimate spherical
harmonics.

In the later sections of Chapter 3, we introduce the Lie ball B(r) = {z €
C™*1; L(2) < r}, which turns out to be E. Cartan’s classical bounded domain of
type 4 (see Hua [12]). We study the space of holomorphic functions on B(r) and

ix



x PREFACE

their expansion by homogeneous polynomials. The Shilov boundary of B(r) is called
the Lie sphere. (See [20] for the spherical harmonic expansion of hyperfunctions on
the Lie sphere.) The complex sphere S® = {z € C"*1;2% = 22 +22+---+22,, = 1}
is the natural complexification of the sphere S*. We put S*(r) = §” N B(r). The
family {S”(r);r > 1} is a fundamental system of complex neighborhoods of the
sphere S®. We shall find a characterization of holomorphic functions on S"(r) by
the growth condition of their spherical harmonic expansion.

In Chapter 4, we introduce hyperfunctions on S™ and more generally analytic
functionals on the complex sphere S*. Then in §4.10, we show that a harmonic
function in the unit ball is in one-to-one correspondence with its hyperfunction
boundary value on S™. This fact motivated the introduction of hyperfunctions.

A special case of the complex sphere is the complex light cone So = {z €
Crtl;22 = 224+ 22 +-- -+ 22, = 0}. Because of the cone structure, we can develop
the theory of expansion holomorphic functions and analytic functionals on So into
homogeneous components. It was our starting point (see Morimoto-Fujita [27]) but
in this book we try to state the theory in the complex sphere of complex radius in
general.

Now suppose a hyperfunction T on the sphere S™ is given. If we define the
function F(£¢) on R™*! by

(0.1) F(§) = (T., exp(iX§ - w))
the function F'(§) satisfies the differential equation
(0.2) (Ag + A)F(¢) = 0.

But a solution of the differential equation (0.2) is not always represented in the form
of (0.1) with a hyperfunction T. In order to represent all the solutions of (0.2),
T in the formula (0.1) should be something more general than hyperfunctions (see
Hashizume-Kowata-Minemura-Okamoto [6]). In the case of n = 1, Helgason [8]
showed that this “something” is an analytic functional of a certain kind (entire
functional). We obtained some detailed results in the case of n = 1 in [19], and
then, in [22], proved that this “something” is an entire functional for general n; we
treat this topic in Chapter 5 (see also Helgason [10]).

In Chapter 6, we introduce several spaces of entire functions, which will be used
to describe the image of the Fourier-Borel transformation in subsequent chapters.

Chapter 7 is based on Morimoto-Fujita [31], where we introduce the Fourier-
Borel transformation for analytic functionals on the complex sphere S). The image
turns out to be the space of A-harmonic entire functions.

Chapter 8 is based on Morimoto-Fujita [30], where we introduce the spherical
Fourier-Borel transformation of y-harmonic functionals on the Lie ball. The image
turns out to be the space of entire functions on the complex sphere S,,.

The present volume is an enlarged version of my lecture note [21] on spherical
harmonic expansion of hyperfunctions on the sphere, which was intended to com-
plement the book [17] on hyperfunctions and microfunctions and the lecture note
[18] on the Fourier transformation of hyperfunctions.



PREFACE xi

Chapter 1 was read at Rikkyo University from April to July, 1978. From Sep-
tember 1978 for one year of my sabbatical leave of absence, I stayed in Europe and
attended seminars on harmonic analysis at the Universities of Nancy, of Strasbourg,
and of Lyon, where I read some part of this lecture note.

In May, 1979, I was invited by Stephan Banach International Mathematical
Center as a lecturer at the Semester on Complex Analysis and read [22], which was
published 4 years later. The discussion with Professor J. Siciak at the semester was
stimulating; I learned the Lie norm and could improve my results considerably.

The aim of [21] was to present a self-contained exposition of the theory of
holomorphic functions and analytic functions on the complex sphere using the Lie
norm. The lecture was read at Sophia University in 1980 and in 1987.

Meanwhile, many interesting results of the theory have been obtained by R.
Wada [45], [48], and [46], especially in connection with the complex light cone.
I tried to present them in a unified manner in this enlarged version, which was
prepared while visiting the University of Maryland at College Park from November
1992 to March 1993 (see [23]).

After coming back to Japan, I was able to obtain several results jointly with

K. Fujita [3], [26], [27], [2], [28], [29], [30], [31], [4], [5]. I try to incorporate them
into this book as much as possible.

March 19, 1998

Mitsuo Morimoto

(Sophia University)
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CHAPTER 1

Fourier expansion of hyperfunctions
on the circle

In this chapter we study the Fourier expansion of functions and hyperfunctions on
the unit circle, which is the one-dimensional sphere of radius 1.

In §1.1 we introduce various spaces of functions on the circle and in §1.2 recall
well-known results on the Fourier series. We define distributions and hyperfunctions
on the unit circle in §1.3 and consider the Fourier expansion of distributions in §1.4
and that of hyperfunctions in §1.5.

The Fourier expansion of a hyperfunction does not converge as a function. In
§1.6 we introduce the Poisson integral of a hyperfunction, which can be considered
as a method of summation of the Fourier series and will be extended to higher-
dimensional cases in later chapters. The Fourier-Borel transform of a hyperfunction
is also considered as a method of summation and is discussed in §1.7. In the last
§1.8 we mention the Cauchy-Hilbert transform of a hyperfunction but we shall not
treat this concept in this book for the higher-dimensional case.

1.1. Function spaces on the circle

Let K be a compact set in the complex plane C. For € > 0, we define the
e-neighborhood K. by K. = K + {z € C;|z| < €}. We say that f is a germ of
holomorphic functions on K if there is € > 0 such that f is a holomorphic function
defined on the open set K.. We denote by O(K) the space of germs of holomorphic
functions on K. O(K) is a complex linear space.

We denote by Oy (K. ) the space of continuous functions on K. that are holo-
morphic on K.. We endow Oy(K.) with the norm || f||c(x,) = sup {|f(2)]; z € K.}.

PROPOSITION 1.1. O(K,) is a Banach space (that is, complete normed space)
equipped with the norm ||f|lc(xk.)-

PROOF. It is clear that it is a normed space. Let us show the completeness.
Assume that

| fx = fellex.y = 0 (K, £ — o0).

For any z € K., the sequence {fx(z)} is a Cauchy sequence. We denote by f(z)
its limit. As the sequence of functions fi converges to the function f uniformly
on K., f is continuous on K. and holomorphic in K.. That is, f € Op(K,) and

If = felle(x) =0 (k— o0). O
We can reformulate the definition of O(K):
O(K) = ind lim{O(K,); e > 0}.

1



2 1. FOURIER EXPANSION

More intuitively, we can say
O(K) = | J{Os(K-);¢ > 0},
where two functions will be identified if they coincide in a neighborhood of K.

By the theory of the inductive limit of topological linear spaces, we have the
following theorem:

THEOREM 1.2. There is a unique Hausdorff locally convex linear topology on
O(K) satisfying the following conditions (i) and (ii) :
(i) For any e > 0, the mapping p. : Op(K.) — O(K) is continuous;
(ii) Suppose B is a locally convez linear space and T : O(K) — B is a linear
mapping. If T o p. : Op(K:) — B is continuous for any € > 0, then T is
continuous.

We omit the proof. We refer the reader, for example, to Komatsu [15].

We call the mapping pe : Op(K.) — O(K) defined above the restriction map-
ping. In the sequel, we equip O(K) with this inductive limit topology.

We are interested in the case K = S!, where S = {z € C;|z| = 1} is the
unit circle. The space A(S') of real analytic functions on the unit circle S! is, by
definition, the space O(S?).

A function f(z) on S! can be identified with the periodic function f of period
21 defined by f(t) = f(e), t € R. Let f € O(S!). Consider f(r) = f(e'"),
7 =t +1s. Since |e"| = e~*, f(7) is holomorphic in the band

{T=t+is;—log(l+¢€) <s< —log(l—¢)}

and periodic of period 27. In particular, if f € A(S!), then f(t) is a C* function.

A function f on S! is a C™ function if f (t) is a C* periodic function of period
21 on R. We denote by £(S') the space of C*° functions on S! and define the
seminorms

1£ll; = sup {|fP@);0 < t < 27}

on it. We equip £(S') with the topology defined by the system of seminorms || f|;,
j:0)1’2)""

PROPOSITION 1.3. £(S!) is a Fréchet space (locally convex complete metrizable
space).

PROOF. Since the topology of £(S!) is defined by a countable system of semi-
norms, it is metrizable. Let us show the completeness. Suppose

Ife = fell; =0 (k, £ — o0)

for any j. We denote by §;(¢) the limit function of the Cauchy sequence A,ij )(t).
The functions §;(t) are continuous and the sequence f,EJ ) converges uniformly to §;
as k — oo for any j. Then the following lemma asserts that go is C? and §; = g(()j )
for any j. This proves the proposition. O

LEMMA 1.4. Suppose fi are C' and fe) = §(t) (k — o) at every point
t. Suppose also f|(t) converges to §1(t) uniformly. Then § is C' and we have
§'(t) = 4:1(t). :

For the proof, we refer the reader, for example, to Takagi [38].



1.2. FOURIER SERIES 3

THEOREM 1.5. The inclusion mapping A(S') — E(S!) is continuous.

PROOF. By Theorem 1.2, we have to show that the mapping O,(St) — £(S')
is continuous for any fixed € > 0. If f € Oy(S}), then we have

f9(2) = 27” /|w—z|=s (w{(:)))jﬂdw

for z € S'. Therefore, we have
- g1 G
If9(2)] < o i1 Ifllsz2me = 5le™7| sy

Because f(t) = f(e), we have
f’(t) — ie“f’(eit),. ‘ |
f”(t) — _e2ztfll(ezt) _ eztf/(ezt),
f”/(t) = _ieSitf///(ei:) _ 3i62itfl/(eit) _ ieit /(eit)

and f () can be represented as a linear combination of

eitfl(eit), e2itfll(eit)’ . ,ejitf(j)(eit).
Therefore, there is a constant C; > 0 such that [|f||; < Cj||fllc(s:) for any f €
Op(SL). This means that O(SL) — £(S') is continuous. O

1.2. Fourier series

We recall the classical theory of Fourier series.
Let g be a continuous periodic function of period 2w. We wish to express g(t)
as follows:

(1.1) gt)= > A, AreC
k=—o0

If the right-hand side of (1.1) converges uniformly, then we have

2w 2
/ Je~tdt = Z A / e'*=0%t = 2 A,
0

k=—o00

and hence
1 27|’ X

(1.2) A = —/ g(t)e *tdt, k=0,+1,42,---.
27r 0

Suppose now both g(¢) and h(t) are continuous periodic functions of period 2.
We define a sesquilinear form (g, h)s: by

27
(9, h)s1 = % /0 g(t)h(t)dt.

By this notation, we can rewrite (1.2) as Ay = (g(t), e***)s1.
For a periodic function g of period 27, we define the Fourier coefficient g(k) of
g(t) by g(k) = (g(t), e***)s: and call the formal series
oo
(1.3) Y. ak)e™

k=—o00



4 1. FOURIER EXPANSION

the Fourier series of g(t) and
N
(1.4) Sn(t)= Y g(k)e™
k=—N
the N-th Fourier partial sum of g(t).

REMARK 1.6. There is a continuous function for which the Fourier series (1.3)
does not converge at any point ¢t. R. T. Seeley [36] is a good introduction to Fourier
series and the reader can find there a list of literature.

Despite this remark, we can modify the meaning of convergence in such a way
that the Fourier series (1.3) converges and that we have

s _ ~ 1N ikt
(1.5) g(t) = Jim Sn(t)= k_Z g(k)er.
Here we mention three methods: the Poisson method, the Féjer method, and the
L? method.

THEOREM 1.7 (Poisson). Let g be a continuous periodic function of period 2.
For anyr with0<r <1,

oo

(1.6) u(r,t) = Y glk)riklett

k=—o0
converges, where the convergence is uniform in 0 <t <2, 0 <r <1 —¢ for any
fized € > 0. The function u(r,t) defined by (1.6) is a harmonic function on the
open unit disk; that is,
Au =0,
where
2 2 2 2
(1.7) A:%jtaa—f:%-i-%%—kr%%, z =rcost, y =rsint,
is the Laplacian. Further, we have
(1.8) lim u(r, t) = g(2),
where the convergence is uniform.
Sometimes this method is called the Abel summation method.

PROOF. Since g is continuous, M = sup {|g(t)|;0 <t < 27} < oo and

lg(k)| < %/0 "|g(t)|dt < M.

Thus, {g(k)} is a bounded sequence of numbers. Therefore, comparing with the
geometric series, we can show that (1.6) converges uniformly. Because every term
in (1.6) is harmonic, the uniform limit function u is also harmonic.

On the other hand, by a simple calculation, the function u(r,t) is given by the
Poisson integral of g:

u('rt)—i/27T 1-r2 (s)d
e 1—2rcos(s—t)+r2gs s
From this formula we can show (1.8). (We omit the details.) d
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The following Féjer theorem is also well-known. For the details, we refer the
reader, for example, to Takagi [38].

THEOREM 1.8 (Féjer). Let g be a continuous periodic function of period 2m
and Sy(t) be the N-th Fourier partial sum (1.4) of g(t). Then we have

1
im N(Sﬁ(t) + 82(t) + -+ Sn (1) = g(t),
where the convergence is uniform.

(1.9)

(1.9) is sometimes called the Cesdro summation method.

Proor. We use the formula

N(t—s)7?
1 1 27 Sin T d
N(Sl(t) + Sa(t) +---+Sn(1) = m/o 9(s) BNEDD s.
Sin T
(The details are omitted.) O

Finally, we mention the L? method.

THEOREM 1.9. Let g be a continuous periodic function of period 2m. (g may
be a square integrable function.) Then we have

0 1 27
SN2 2 _ L 2
> 1M =gl = 3= [ latoPar

k=—o00

and
Ji [|Sy —gllgs = 0.

Theorem 1.9 is one of the first theorems in the theory of Hilbert spaces. We
omit the details.
It is easy to prove the following lemma.

LEMMA 1.10. Let f1, fo, -+ be a sequence of continuous functions defined on
[0,27] and put sy = f1+ fa+ -+ fn. If sn(t) converges uniformly to f(t) as
N — o0, then

(1) S5 r*fiu(t) — f(t) uniformly asT — 1 -0,

(i) L(s1+s2+ -+ sn) — f(t) uniformly as N — oo,
(iii) ||sy — fllsst = 0 as N — oo.

As remarked earlier, the converse is not always true. (We have a counter-
example in the Fourier series.) If we assume smoothness on g, then we can prove
the uniform convergence of the Fourier series.

THEOREM 1.11. Let g be a C* periodic function of period 2r. Then the N -th
Fourier partial sum Sn(t) of g(t) converges to g(t) uniformly as N — oco.

PROOF. We put
1 2
A= —
2 0

If £ # 0, then by integration by parts we have

3(k) = — / " et = L a
9 2w g R

g (t)e *tdt.
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Therefore, by Theorem 1.9, we get

- 1 1
Sl =3 L1kl <[> o [ 4L < co.
k#0 k#0 k#0 k#0

This shows that Sy converges uniformly as N — co. The limit function is equal to
g(t) because of Lemma 1.10 and Theorem 1.9. O

DEFINITION 1.12. A sequence of numbers {Ayg}kez is rapidly decreasing if
sup {|k|’|Ak|; k € Z} < oo for any j > 0.
For the Fourier expansion of C*° functions we have the following theorem:

THEOREM 1.13. Let g be a C* periodic function of period 2w. Then the se-
quence of Fourier coefficients {g(k)}rez is rapidly decreasing and we have (1.5) in
the topology of £(S').

Conversely, let {Ar}rez be a rapidly decreasing sequence. Then

(1.10) gt) = D Apet
k=—o00
converges in the topology of £(S') and satisfies §(k) = Ag.

PROOF. By integration by parts, the Fourier coefficient of gt/ (t) is given by

i 1 27 ( ) k

G)(k) = — 3) (¢)e ikt
dO) = 5 [ O Har

1 ) ) o .
= o {0+ [ g0 @yikear
0
— (z'k)g(]_l)(k) = ... = (ik) §(k).

Since {g(%)(k)} is bounded for any j, {g(k)} is a rapidly decreasing sequence. The
Fourier expansion of g(4) is given by

o0
gV(t) = D (k)Y g(k)e™,
k=—o00
where the convergence is uniform by Theorem 1.11. Because
SY(0) = Y (kY gk)e™,
k=—N

we have Sy (t) — g(t) in the topology of £(S') as N — co.
Conversely, if a sequence { A }rez is rapidly decreasing, then Lemma 1.4 implies
that (1.10) is a C* function and g(k) = Ag. O

Because Sy (t) is a real analytic function, we have the following corollary.

COROLLARY 1.14. A(S') is dense in £(S).
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1.3. Distributions and hyperfunctions

A hyperfunction on the unit circle S! is a continuous linear functional on A(SY)
and a distribution on S' is a continuous linear functional on £(S'). We denote by
B(S') the space of hyperfunctions on S! and by £’(S') the space of distributions
on St.

The canonical bilinear form of duality on B(S') x A(S!) is denoted by (T, g).
We denote also by the same notation (T, g) the canonical bilinear form on £’(S') x
E(SY).

The convergence in the topology of B(S') is defined weakly; we say a sequence
{T;} of hyperfunctions converges to a hyperfunction T in the topology of B(S') if
and only if

(Ty, g) — (T, g) for any g € A(S").

The convergence in the topology of £'(S!) is also defined weakly.
If f is an integrable function on S', then we can define Ty € £'(S!) by

2m
766039~ @ Ne =5 [ a@F 0

The mapping f +— Ty is an antilinear injection. (For the proof of this fact, we
should go back to the definition of Lebesgue integration.) In the sequel, we shall
identify the distribution Ty with the integrable function f.

THEOREM 1.15. A distribution on S' is a hyperfunction; that is, there is a
linear injection

(1.11) E'(SY) — B(sh).
PROOF. The mapping A(S') — £(S!) is continuous (Theorem 1.5). Restrict-

ing T € £'(S") to A(S!), we can define the mapping (1.11). It is injective since
A(S!) is dense in £(S!) (Corollary 1.14). O

1.4. Fourier expansion of distributions

DEFINITION 1.16. A sequence of numbers { By, }rez is slowly increasing if there
exist C > 0 and j > 0 such that

|Bx| < C(1+ |klP), keZ.
For simplicity, sometimes we omit the subscript and denote { By }rez by {Bxk}.
For T € &£'(S'), we put
T(k) = (T(t), €*), keZ
and call them the Fourier coefficients of T

_ THEOREM 1.17. Suppose T € E'(SY). Then the sequence of Fourier coefficients
{T'(k)} is slowly increasing on Z and we have

oo

(1.12) T(t)= Y T(k)e*

k=—o0

in the topology of £'(S'). For T € £'(S') and g € £(S'), we have

(T, 9)= > T(k)g(k).

k=—o0



