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Preface

Many of the greatest success stories of organometallic and inorganic chemistry
are in the application of metal complexes to catalytic reactions. In many cases,
precious metals perform the heavy lifting, breaking H-H bonds, forming C-H or
C-C bonds, etc. Precious metals have become so familiar in these roles that in
some cases the precious metal and their catalytic reactivity seem almost inextrica-
bly linked. Wilkinson'’s catalyst, a rhodium complex, played a pivotal role in our
understanding of hydrogenations. More recently, Noyori and co-workers devel-
oped remarkably reactive ruthenium complexes for asymmetric catalytic hydro-
genations of C=0 bonds. Over 150 years have passed since the discovery of a fuel
cell that oxidizes hydrogen, yet modern low-temperature fuel cells still require
platinum. Many carbon-carbon coupling reactions used extensively in organic
synthesis function efficiently with extremely low loadings of palladium catalysts.

Kicking old habits is never easy, despite the allure of significant rewards for
making the desired change. Yet we now know that the use of precious metals in
catalysis is not always required. The research presented in this book shows how
new catalysts that do not require precious metals may ultimately supplant the use
of precious metals in some types of reactions. This book also highlights the chal-
lenges remaining in the development of catalysts that do not require precious
metals. The pathway to devising new types of catalysts using abundant metals
often involves scrutiny of reaction mechanisms that could potentially accomplish
the desired goal, and finding ways to coerce inexpensive, abundant metals into
accomplishing that task. In many cases those mechanisms are altogether different
from those used in traditional precious metal catalysts. As can be seen in different
chapters in this book, some of the catalytic reactions that use cheap metals are
already competitive with well-known reactions that use precious metals. Even in
new catalysts that do not yet exhibit rates or lifetimes that compare favorably to
long-established and well-optimized precious metal catalysts, fundamentally new
reactivity patterns have been discovered, and new classes of catalysts have been
developed. This book provides detailed information on many types of reactions
that can be catalyzed without the need for precious metals. I hope that these
chapters may inspire others to join in the pursuit of “cheap metals for noble tasks.”

Research on alternatives to precious metal catalysts has been growing rapidly in
recent years, and expected to experience increased growth in the future. The most
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obvious reason for replacing precious metals is that they are very expensive, often
costing more than 100 or 1000 times the cost of base metals. The high cost is
obviously connected to the low abundance of these metals. High cost alone is not
the only reason, however; in some cases specialized organic ligands (used in asym-
metric catalysis, for example) cost more than the metal. Substantial costs are
involved in industrial processes when recovery and recycle of the metal is required.
Another attribute of avoiding precious metals is that some metals like iron have
a minimal environmental and toxicological impact. Importantly, some large-scale
uses in energy storage and conversion currently being considered would require
large amounts of precious metals. In automotive transportation, for example,
conversion to a “hydrogen economy” based entirely on fuel cells that require plati-
num would not be feasible, not only due to the high cost, but because there is not
enough platinum available to accommodate such a huge scale of usage.

The order of the chapters in this book follows their order in periodic table, start-
ing at the first row of group 6 (Norton’s chapter on chromium catalysts) and
continuing to Group 6 metals molybdenum and tungsten. While most of the
inexpensive, abundant metals are from the first row of the periodic table, molyb-
denum and tungsten (from the second and third row of the periodic table) are
exceptions, as they are much less expensive than precious metals. Subsequent
chapters focus on catalysis by iron (Group 8), cobalt (Group 9), nickel (Group 10)
and copper (Group 11). The last chapter highlights new catalysts that have no
transition metals at all, using the main group elements phosphorus and boron.
The cover highlights the inexpensive, abundant metals that are discussed in this
book, with those metals being highlighted in green, and the precious metals of
low abundance and high cost being shown in red. Manganese is abundant and
inexpensive, and offers appealing opportunities for development into catalytic
reactions. But since no chapters in this book focus on Mn, so it was not shown in
green on the cover.

This book focuses on homogeneous (molecular) catalysts. There is a need to
replace precious metals used in heterogeneous catalysis as well, but that topic is
beyond the scope of material that can be covered in one book.

I sincerely thank all of the authors of the chapters in this book. They contributed
their expertise and time in the writing of their chapters, and gracefully put up with
annoying e-mails and editorial suggestions from me. I appreciate the enthusiasm
they share for developing the chemistry of abundant, inexpensive metals as attrac-
tive alternatives to precious metals. Paul Chirik and Jack Norton gave me very
helpful advice in the planning of this book.

I am deeply indebted to many scientific colleagues who have influenced my
thinking, and who helped teach me chemistry over the years. In particular, Carol
Creutz (Brookhaven National Laboratory) and Dan DuBois (Pacific Northwest
National Laboratory) have both been extremely generous with their time and
patient with my questions. I thank my scientific mentors, Chuck Casey and Jack
Norton, for invaluable advice on many topics for more than twenty-five years.

It was a pleasure to work with Dr. Heike Nothe at Wiley-VCH, and with Dr.
Manfred Kohl in the early stages of preparations and planning for this book.
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I dedicate this book to my wife, Cindy, to my son, Claude, and to my daughter,
Lindsay. I thank them for being immensely supportive, including times when I
was in the lab or my office rather than at home.

June 2010 R. Morris Bullock
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1

Catalysis Involving the H* Transfer Reactions of First-Row
Transition Metals

John Hartung and Jack R. Norton

The M-H bonds of transition-metal hydride complexes may be cleaved heterolyti-
cally (H*, H™ transfer) or homolytically (H" transfer). AG for the H" transfer in
Equation 1.1 is readily quantified by pK, measurements (see Chapter 3). Analo-
gous measurements for H™ transfer, or “hydricities”, are difficult because the loss
of H™ generates a vacant coordination site. However, AG for Equation 1.2 can be
determined indirectly, from electrochemical and pK, measurements in the appro-
priate solvent [1, 2], and we can thus compare the “hydricities” of various hydride
complexes (see Chapter 3). The lowest values of AG, - (corresponding to the com-
plexes most eager to transfer H") are found for second- and third-row transition
metals” [3], which is why those (relatively expensive) metals are good H™ donors
and effective catalysts for reactions like ionic hydrogenation [5-10].

M-H = M~ +solventH" (1.1)
[M-H =M+H" (1.2)

The thermodynamics of the homolytic cleavage of an M—H bond (1.3) are also
available from electrochemical and pK, measurements (the thermodynamic cycle
in Equations 1.4-1.6). The oxidation potential is that of the one-electron process
in Equation 1.5. If the pK, is measured in CH;CN, and the potential is measured
relative to ferrocene/ferrocenium in that solvent, AG for Equation 1.3 in CH;CN
is given by Equation 1.7 [11, 12], while the bond dissociation energy (BDE) for
Equation 1.3 (the traditional gas phase “bond strength”) is given by Equation 1.8?.

M-H = M.+ H- (1.3)
M-H=M +H* (1.4)
M =M-+e" (1.5)
H'+e =H-. (1.6)
1) For [HM(P-P),]", experiments show that 2) The relative and absolute uncertainties in
G,,- decreases in the order Ni > Pt > Pd; bond strengths determined in this way
see reference [4]. are discussed in reference [13].
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2

1 Catalysis Involving the H' Transfer Reactions of First-Row Transition Metals

Table 1.1 Bond dissociation energies of some chromium and
vanadium hydrides.

Hydride M-H BDE, kcal mol™

CpCr(CO)H 62.2

dppm(CO),VH 57.9

dppe(CO),VH 57.5

dppp(CO),VH 56.0

dppb(CO),VH 54.9
AG(M-H)(kcal mol')=1.37pK, (M=H)+23.06(M " /M")+53.6 (1.7
BDE(M-H)(kcal mol')=1.37pK, =23.06E°+59.5 (1.8)

Such measurements show the weakest M—H bonds to be those of first-row transi-
tion metals [4], and suggest that these (relatively abundant and cheap) metals are
best for catalyzing reactions that involve H' transfer. Because most of these metals
are nontoxic, their H" transfer reactions offer an attractive alternative to the tin-
mediated radical chemistry that has become ubiquitous in organic synthesis.

Bond dissociation energies of most M—H bonds lie between 60 and 65 kcalmol™
[4). A few are much stronger: the Os-H bond of Cp(CO),OsH has a BDE
>82kcalmol ™' [14]. On the other hand V-H bonds are particularly weak. Calcula-
tions at the B3LYP level of theory on the hypothetical VH; give it the weakest
M-H bond (43kcalmol™) among neutral “valency-saturated” MH, (i.e., among
complexes where M forms the maximum number of M—H bonds) [15]. Experi-
mentally Table 1.1 [13] shows very weak V-H bonds for (P-P)(CO),VH
(P-P = Ph,P(CH,),PPh,, with n =1 (dppm), n =2 (dppe), n = 3 (dppp), and n = 4
(dppb) [16, 17).

An H- transfer, or hydrogen atom transfer (HAT), reaction has been defined
by Mayer as “the concerted movement of a proton and an electron ... in a single
kinetic step where both ... originate from the same reactant and travel to the
same product.” [18] Mayer considers HAT to be “one type of the broad class of
proton-coupled electron transfer (PCET) reactions, which also includes reactions
where the proton and electron are separated.” The distinction is a matter of
ongoing discussion [19, 20], and other acronyms have been proposed [19, 21], but
all the reactions to be considered in this chapter can be satisfactorily described as
“H" transfer”.

1.1
H* Transfer Between M—H Bonds and Organic Radicals

HAT reactions from transition-metal hydrides to organic radicals R* (1.9) are
characterized by second-order kinetics. Second-order kinetics have been



1.1 H' Transfer Between M—H Bonds and Organic Radicals

Table 1.2 Bond dissociation energies and rates of H' transfer
to tris(p-tert-butylphenyl)methyl radical (extrapolated to room
temperature) of several hydrides.

Hydride BDE, kcal mol™ kyy M7's™!
Cp(CO),Fe-H 574 1.2 x 10
Cp(CO),Cr-H 62" 335
Cp(CO),Ru-H 65 1.03 x 10°
(C0),Co-H 59,9 67 1.6 x 10*
(CO);Mn-H 68" 741
Cp(CO);Mo-H 69" 514
Cp(CO),W-H 729 91
(C0O),0sH, 78% 15.7

a)  Ref[120].

b) Ref[13].

c) Ref[22].

d) Ref[23].

established (the rate constants are shown in Table 1.2) for the transfer of H* from
a variety of hydrides to the tris(p-tert-butylphenyl)methyl radical [24-26]. The bulky
t-Bu substituents keep it entirely monomeric in solution [27, 28]. Additional
evidence that H" transfers to R obey second-order kinetics is provided by studies
of the last step in radical hydrogenation reactions (see Equations 1.14 and 1.15
below). If the hydride L,M-H in a transfer such as Equation 1.9 is coordinatively
saturated (18 electrons), the metalloradical L,M" will have a 17 electron
configuration.

LM-H+R=1L,M +R-H (1.9)

Second-order kinetics have also been established for H' transfer in the reverse
direction, that is, from R-H to M". The rate constant for Equation 1.10, from
1,4-cyclohexadiene to Cp(CO),0s’, has been measured by time-resolved IR spec-
troscopy as 2.1 x 10°M's™' (23°C, hexane) [14]. Intriguingly, H" can be abstracted
by a photogenerated osmium metalloradical from even stronger C-H bonds, such
as those of toluene and THF; photolysis of [Tp(CO),0s], (Tp = tris(pyrazolyl)
borate) in either of these solvents gives the osmium hydride. (The C-H bonds of
toluene (90kcalmol ™ for the methyl group) and THF (92kcalmol™) are consider-
ably stronger than that of cyclohexadiene (77 kcal mol™) [14, 29].)

H

H .~‘H .
) @ o
Cp(CO),0s- + — ~ Cp(CO),0s-H +

Steric factors can be important in H' transfer reactions. The rate constant (k)
of H" transfer to tris(p-tert-butylphenyl)methyl radical decreases by a factor of 37
from Cp(CO);MoH to Cp*(CO);MoH (which has an Mo-H bond of comparable



