Image Processing, Analysis,
and Machine Vision

A MATLAB Companion

Tomas Svoboda
Jan Kybic

Vaclav Hlavac

Image Processing, Analysis,
and Machine Vision

A MATLAB COMPANION

Tomas Svoboda
Czech Technical University, Prague

Jan Kybic
Czech Technical University, Prague

Vaclav Hlavac
Czech Technical University, Prague

THOMSON

Australia Canada Mexico Singapore Spain United Kingdom United States

THOMSON

Image Processing, Analysis, and Machine Vision: A MATLAB Companion

by Tomas Svoboda, Jan Kybic, Vaclav Hlavac

General Manager:
Chris Carson

Developmental Editor:
Hilda Gowans

Permissions Coordinator:
Vicki Gould

COPYRIGHT © 2008 by Thomson
Learning, part of the Thomson
Corporation.

Printed and bound in the United
States of America
12 3 4 10 09 08 07

For more information contact
Thomson Learning,

1120 Birchmount Road,

Toronto, Ontario, M1K 5G4. Or
you can visit our Internet site at
http://www.thomsonlearning.com

Library of Congress Control
Number 2007904151

ISBN: 10: 0-495-29595-7
ISBN: 13: 978-0-495-29595-2

Production Manager:
Renate McCloy

Interior Design:
Vit Zyka

Cover Design:
Andrew Adams

ALL RIGHTS RESERVED. No part of
this work covered by the copyright
herein may be reproduced,
transcribed, or used in any form or
by any means—graphic, electronic,
or mechanical, including
photocopying, recording, taping,
Web distribution, or information
storage and retrieval systems—
without the written permission of
the publisher.

For permission to use material
from this text or product, submit
a request online at
www.thomsonrights.com

Every effort has been made to
trace ownership of all copyrighted
material and to secure permission
from copyright holders. In the
event of any question arising as to
the use of any material, we will be
pleased to make the necessary
corrections in future printings.

Compositor:
Vit Zyka

Printer:
Thomson/West

North America
Thomson Learning

1120 Birchmount Road
Toronto, Ontario M1K 5G4

Canada

Asia

Thomson Learning
5 Shenton Way #01-01

UIC Building
Singapore 068808

Australia/New Zealand

Thomson Learning
102 Dodds Street
Southbank, Victoria
Australia 3006

Europe/Middle East/Africa

Thomson Learning
High Holborn House
50/51 Bedford Row
London WCIR 4LR
United Kingdom

Latin America
Thomson Learning
Seneca, 53
Colonia Polanco
11560 Mexico D.F.
Mexico

Spain

Paraninfo
Calle/Magallanes, 25
28015 Madrid, Spain

Introduction to the companion book

The book you are reading is a companion to the textbook Image Processing, Analysis,
and Machine Vision by M. Sonka, V. Hlavac, and R. Boyle [Sonka et al., 2007]. As the
references to the textbook occur often, we will use an icon &J.

Structure of the companion book

This book provides additional material for readers of). It should assist students, teachers
and practitioners to acquire practical understanding in a ‘hands on’ fashion. This book
offers the reader problems of varying difficulty and selected algorithms from [(and some
additional ones) in Matlab.

Matlab has been selected as an implementation language because:

It is widely used by developers of image analysis algorithms and researchers in the
field.

It allows quick prototyping.
Our experience is that using Matlab in exercises and assignments allows students to
concentrate more on algorithms than on programming.

Most image analysis algorithms coded in Matlab can be easily rewritten in other
procedural languages such as C, C++ or Java.

There are many third party implementations of algorithms available in Matlab.

Among other libraries, Matlab is accompanied by the Image Processing Toolbox
which covers basic image processing and a few image analysis capabilities well. It is
easy to use. This book exploits the Image Processing Toolbox instead of rewriting
simple algorithms anew. The image processing toolbox is accompanied by a freely
downloadable booklet!.

Problems are classified into three classes according to their level of difficulty; we follow
the analogy of classifying difficulty of downhill ski slopes and mark problems by the colors
blue, red and black. The blue problems are the easiest.

Blue problems are often questions that may be answered by students in their self-study

as a reassurance that the material provided in [k was well understood. Most blue
problems can be solved immediately or in at most a few minutes with just pen and
paper. Teachers may use blue problems in written tests or other assignments.

Thttp://www.mathworks.com/products/image

X Introduction to the companion book

[REAPFObIEMS arc also mostly of a pen and pencil nature or very short computer exercises.
However, they might need more thinking and usually up to half an hour to be solved.

IBIGEEPFOBIEIS require more thorough analysis and/or require practical use of computer
tools and/or development of short application programs. They can be used as
computer exercises or homework assignments for students.

The rest of each chapter contains the Matlab implementations of selected algorithms
provided in [and also some additional algorithms. This book emphasizes pedagogical
aspects—algorithms are presented to demonstrate the principles. While writing the code,
the preference was given to clarity over broad functionality and maximal processing
speed. For instance, we did not consider images of all possible gray levels or color models.
Whenever possible the code is fully functional and self-contained. However, we often
skip uninteresting parts related, for example, to error detection and default parameter
handling. A full version of the codes can be obtained on the book homepage, except for a
few rare cases where we did not include it for space or legal reasons.

Each function code starts with a list of input and output parameters in a gray
background box. Optional parameters are typeset in a slanted font, see dft_edu (p. 20)
for an example. The second column contains the parameter sizes for regular matrix
parameters, the parameter type (such as structure or function) for non-matrix parameters,
and the default value in curly braces for optional parameters.

Chapters of this book have the same general structure as & to allow the reader to
work with both books easily. On the other hand, this book is self-contained and can be
used on its own by teachers or students who learned the subject by other means.

The WWW page for the companion book

The webpage http://visionbook.felk.cvut.cz (book homepage) accompanying this book
was created with the intention that the authors will maintain and extend it in the future.
The fully commented Matlab implementations of methods provided in this book are
accessible here for educational purposes.

We anticipate use of the books will generate feedback from readers and the webpage
will accumulate it as time goes by.

Useful learning material by others

There are several other commonly used textbooks introducing image processing and
analysis which provide experimental material and sample code. Two principal ones
are [Gonzalez and Woods, 2002], which is widely used in image processing courses and has
a companion book [Gonzalez et al., 2004] providing Matlab examples; secondly, [Burger
and Burge, 2006] (written in German, with an English version expected in fall 2007) is
excellent in its educational aspects. The Java programming environment ImageJ? from
the National Institute of Health is taken as its basis, and the authors maintain a webpage
with very good examples®.

2http://rsb.info.nih.gov/ij
3http://www.imagingbook.com

Introduction to the companion book xi

Tomas Svoboda

zech Technical University
Prague, Czech Republic

svoboda@cmp.felk.cvut.cz
http://cmp.felk.cvut.cz/~svoboda

Jan Kybic

Czech Technical University
Prague, Czech Republic

kybic@cmp.felk.cvut.cz
http://cmp.felk.cvut.cz/~kybic

Vaclav Hlavac

Czech Technical University
Prague, Czech Republic

hlavac@cmp.felk.cvut.cz
http://cmp.felk.cvut.cz/~hlavac

Contents

Introduction to the companion book

Structure of the companion book
The WWW page for the companion book
Useful learning material by others

1 Introduction

1.1
1.2

Problems
Viewing an image: image_view_demo

2 The image, its representations and properties

21
2.2
2.3
2.4

Problems

Displaying a coarse binary image: coarse_pixels_draw
Distance transform: dist_trans_demo

Border of a region: region_border_demo

3 The image, its mathematical and physical background

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Problems

Convolution, shift-multiply-add approach: conv_demo

Discrete Fourier Transform: dft_edu

Inverse DFT: idft_edu

1D Discrete Fourier Transform: dftid_demo

2D Discrete Fourier Transform: dft2d_demo

Basis functions for the 2D Discrete Cosine Transform: dct2base
Principal Component Analysis: pca

4 Data structures for image analysis

4.1
4.2
4.3
4.4
4.5

Problems

Matlab data structures: structures
Displaying image values: showim_values
Co-occurrence matrix: cooc

Integral image construction: integralim

5 Image pre-processing

5.1
5.2
5.3

Problems
Grayscale transformation, histogram equalization: hist_equal
Geometric transformation: imgeomt

ix

now

SO~ NN = -

—
Do

20
21
23
25
28

33
34
35
36
39
42

43
47
49

Vi Contents

5.4
5.5
5.6
5.7

Smoothing using a rotating mask: rotmask
Image sharpening by Laplacian: imsharpen
Harris corner detector: harris

Frequency filtering: buttfilt

6 Segmentation |

6.1
6.2
6.3
6.4
6.5
6.6

Problems

Iterative threshold selection: imthresh

Line detection using Hough transform: hough_lines
Dynamic programming boundary tracing: dpboundary
Region merging via boundary melting: regmerge
Removal of small regions: remsmall

7 Segmentation Il

7.1
7.2
7.3
7.4
7.5
7.6

Problems

Mean shift segmentation: meanshsegm
Active contours (snakes): snake
Gradient vector flow snakes: mgvf
Level sets: levelset

Graph cut segmentation: graphcut

8 Shape representation and description

8.1
8.2
8.3
8.4
8.5

Problems

B-spline interpolation: bsplineinterp
Convex hull construction: convexhull
Region descriptors: regiondescr
Boundary descriptors: boundarydescr

9 Object recognition

9.1
9.2
9.3
9.4
9.5

Problems

Maximum probability classification for normal data: maxnormalclass

Linear separability and basic classifiers: linsep_demo
Recognition of hand-written numerals: ocr_demo
Adaptive boosting: adaboost

10 Image understanding

10.1
10.2
10.3
10.4
10.5

Problems

Random sample consensus: ransac

Gaussian mixture model estimation: gaussianmixture
Point distribution models: pointdistrmodel

Active shape model fit: asmfit

11 3D vision, geometry

11.1
11.2

11.3
11.4

Problems

Homography estimation from point correspondences—DLT method:

u2Hdlt
Mathematical description of the camera: cameragen
Visualize a camera in a 3D plot: showcams

53
57
60
62
66

66
69
71
73
75
78

81

81
83
85
91
93
97

102

102
104
107
110
115
119
119
122
123

126
127

134
134
136
139
144
150

154
154
156

159
161

Contents

11.5 Decomposition of the projection matrix P: P2KRtC

11.6 Isotropic point normalization: pointnorm

11.7 Fundamental matrix—=8-point algorithm: u2Fdlt

11.8 Geometrical Explanation of Epipolar Geometry: u2Fd1t_demo
11.9 3D point reconstruction—linear method: uP2Xd1lt

12 Use of 3D vision

12.1 Problems
12.2 Tterative closest point matching: vtxicrp

13 Mathematical morphology

13.1 Problems

13.2 Top hat transformation: tophat

13.3 Object detection using opening: objdetect
13.4 Sequential thinning: thinning

13.5 Ultimate erosion: ulterosion

13.6 Binary granulometry: granulometry

13.7 Watershed segmentation: wshed

14 Image data compression

14.1 Problems

14.2 Huffman code: huffman

14.3 Predictive compression: dpcm

14.4 JPEG compression pictorially, step by step: jpegcomp_demo

15 Texture

15.1 Problems

15.2 Haralick texture descriptors: haralick
15.3 Wavelet texture descriptors: waveletdescr
15.4 Texture based segmentation: texturesegm
15.5 L-system interpreter: lsystem

16 Motion analysis

16.1 Problems

16.2 Adaptive background modeling by using a mixture of Gaussians: bckggm
16.3 Particle filtering: particle_filtering

16.4 Importance sampling: importance_sampling

16.5 Kernel-based tracking: kernel_based_tracking

Acknowledgments
References

Index

vii

162
163
164
166
168

171

171
171

174

175
176
178
180
183
185
188

190

190
192
197
203

207
207
209
213
215
219

224

224
225
232
241
242

247

248

252

Chapter

Introduction

Chapter 1 of [discusses the image and its formation informally in a broad context.
It provides neither formal definitions of image related concepts, nor algorithms to be
implemented. The problems formulated below address these general image related
considerations. In the experimental part of the chapter, we demonstrate pragmatically
how to display an image in Matlab.

1.1 Problems

1.1. What is the difference between image analysis (or computer vision) on the one side
and computer graphics on the other?

1.2. Enumerate the principal reasons why computer vision is hard. Compare with
[Section [:1.2].

1.3. Digital signal processing and low-level image processing typically do not interpret
image data. Explain what is meant by interpretation, trying to use mathematical
formalisms for the explanation. What is the benefit of using interpretation in image
analysis? On the other hand, what is the main constraint of using interpretation?

1.4. (i) Briefly discuss the difference between local and global analysis of images; (ii) Give
some advantages and disadvantages of both; (iii) Give two examples of local analysis;
(iv) Give two examples of global analysis.

| Assuming that an image captured by your camera is digital and in color, split it
into red, green, and blue components and display them.

. Experiment with the Matlab function #\:improfile in the interactive mode. Find
three interesting intensity profiles in your image. Discuss why you found them
interesting.

2 Chapter 1: Introduction
1.2 Viewing an image: image_view_demo

In the experimental section of this chapter, the intention is to assist the reader in displaying
an image using Matlab commands. Guidance will be very pragmatic, trusting in the
reader’s common sense. The example should allow the Matlab novice to get some feeling of
the software environment and see how an image can be displayed. However, it is assumed
that Matlab and its Image Processing toolbox are already installed.

The guidance provided at the beginning will be quite detailed and wordy. In later
chapters, the accompanying text is going to be much more concise and the Matlab code
will often speak for itself; this will be necessary to present many advanced algorithms in
reasonable space.

The reader probably has a digital camera; assume that we wish to capture an image,
display it in Matlab, and demonstrate some of the issues discussed in [Chapter [#/:1]. Most
cameras provide JPEG-compressed color images. Such an image can be copied from the
camera to the computer.

We will provide one such image depicting a boy kneeling on a bench and turning his
back to the viewer. The colors appearing in the image and the striped sweatshirt will be
of use in this example.

Start Matlab and wait for the prompt; commands can now be issued. If some command
is unclear then consult the extensive Matlab help or user documentation: Just type #:help
for the former or #:doc for the latter.

The image was captured by an ordinary digital camera and copied to the computer
disk, from where it has to be read. It is named Ondra_sampling. jpg and is stored in the
subdirectory images. The suffix . jpg suggests that the image is compressed using JPEG.
We ignore image format issues at this point because the Matlab function #:imread copes
with many different formats: the filename suffix suggests to Matlab in which format the
data are stored.

We will read the image using function imread and store it to the Matlab variable
boy, then display it on the screen using function #:image. There are other functions in
Matlab, which can be used for image visualization, e.g., #:imshow or #:imagesc. This is
not important for us at the moment. We will also give the image a title; axes in both
coordinate directions (rows, columns) are displayed too. The function #:image does not
display square pixels in its default setting. The command axis image will achieve this.

% read the input color image from a disk
boy = imread(’images/Ondra_sampling.jpg’);
% display the image in the MATLAB figure
image (boy) ;

axis image

% add the title to the figure

title(’ Input ,color image of a boy’);

The color image is shown in Figure 1.1, consisting of three color components, red, green
and blue. The Matlab function #:imread creates a data structure of a Matlab internal
data type (a multidimensional array) and assigns it to the variable boy. This particular
multidimensional array is three-dimensional; it can be imagined as a collection of three
matrices. The first matrix stores a red component image, the second matrix contains a
green component image, and the third represents the blue component image.

Pixel values in each of the three component images correspond to the intensity of
the appropriate color. For instance, in the matrix corresponding to the red channel the

1.2 Viewing an image: image_view_demo 3

Input color image of a boy

Figure 1.1: A color image of a boy on
a bench.

: i i S oo o
100 200 300 400 500 600 700 800 900 1000

value 0 means that there is no red color and the maximal value (in this particular case
value 255 because pixel values in each color channel are encoded in 8 bits) indicates that
a saturated red color is present.

There is a very useful Matlab command #:whos which lists in alphabetical order
all variables in the currently active workspace along with their sizes, types, class and
attributes. This text information is written to the Matlab command window. If the
command #\:whos is followed by the name of the variable then only the information about
the particular variable is displayed. If the command whos boy is issued then the following
information appears:

Name Size Bytes Class
boy 808x1010x3 2448240 uint8

The size information shows that each component image (matrix in Matlab) has 808
rows, 1010 columns and there are three such matrices in the multidimensional array.
E.g.,the Matlab expression boy(157, 205, 3) provides the pixel value with the row
coordinate 157, the column coordinate 205 in the third matrix (in our case the blue
channel).

We are now ready to separate the image stored in boy into three separate matrices
representing individual color components. To understand the expressions involved, we
have to use the Matlab colon operator, which allows the expression of iterations in
(multidimensional) array subscripts concisely. If A is a matrix then the expression A(:,j)
points to the j** column of matrix A. Alternatively, the expression A(i,:) points to
the 7" row. In our case, the expression boyR = boy(:,:,1) selects the first matrix of
our three dimensional array and creates an appropriate matrix with the red channel
component image.

% extract individual color components

boyR = boy(:,:,1); % image with the red channel content
boyG = boy(:,:,2); % image with the green channel content
boyB boy(:,:,3); % image with the blue channel content

Having separated individual color channels we are ready to display them; the following
commands do the job. Four images are displayed in Figure 1.2.

4 Chapter 1: Introduction

figure; 7% create a new MATLAB figure

% draw four images into the figure

subplot(2,2,1), subimage(boy), axis off, title(’boy,— color image’);
subplot(2,2,2), subimage(boyR), axis off, title(’boyR. -, red channel’);
subplot(2,2,3), subimage(boyG), axis off, title(’boyG, -, green channel’);
subplot(2,2,4), subimage(boyB), axis off, title(’boyB, - blue channel’);

(¢) boyG—green channel (d) boyB-—blue channel

Figure 1.2: (a) A color image is separated into three color component images; (b) the red channel
image; (b) the green channel image, and (c) the blue channel image.

Have a look at the color image and the three color component images, and try to
understand how particular colors manifest in components. The red trousers and a blue
stripe around his waist are good candidates for inspection.

A color image can be converted to a grayscale image; the values of the three constituent
color channels are taken as input. Matlab has a function #:rgb2gray which performs the
conversion. The other expressions involved are used to display the image in a proper form.
The grayscale image can be seen in Figure 1.3. Ignore for a while the red line segment in
Figure 1.3 and the Matlab code in the bottom line which draws this line segment into the
image. The role of the red line segment will be explained soon.

boyGray = rgb2gray(boy); % convert the color image into a grey-level one

figure; % create a new MATLAB figure
image (boyGray) ; % display the grayscale image
colormap(gray(256)) ; % use the appropriate color map
axis off % switch off the axes with scales

% create a line segment between pixels (460,140) and (872,457),
% values given in (row,column) coordinates

rl = 460; «cl1 = 140; 1r2 = 872; c2 = 457;

% draw the line to the picture

line([r1, r2], [cl, c2], ’Color’,’r’, ’LineWidth’,3);

1.2 Viewing an image: image_view_demo 5

Humans are very good at understanding images because they have the ability to grasp
the global situation. The human eye is also an excellent and precise sensor for relative
measurements, i.e., for comparison with other reference values. However, the eye performs
badly as a measurement device of absolute values. In image analysis, such quantitative
measurements are often needed if a human wishes to understand properties of image data.
For instance, we humans do not see noise properties in images well.

There is a very useful visualization tool permitting measurement of images quantita-
tively by image profiling. The idea is to cut the image along some curve (profile)—a line
segment is the simplest instance of such a curve. The image values of the image can be
plotted as a one-dimensional function on which the details are much more clearly visible.

Matlab contains a function #:improfile which implements an image profiling tool.
If it is run without parameters then it allows the user to specify a line with a mouse
along which the profile is going to be displayed. This mode is often used. We use the
other option allowing us to enter the line endpoints off-line. In our demonstration, we use
Figure 1.3 as input. The line segment is selected in such a way that it shows the changing
intensity values across the stripes on the sweatshirt: it is shown in Figure 1.3 in red.

Now we are ready to display the intensity profile using the Matlab expression
4\:improfile. The code for adding the title to the figure and the label of the y-axis is
self-explanatory.

% create a new MATLAB figure

figure;

% calculate and display the intensity profile

% along the line segment created earlier
improfile(boyGray, [r1, r2], [c1, c2]);

ylabel (’Pixel value’);
title(’Intensity, profile along the line segment’);

¥
Intensity profile along the line segment

250 |

. v
200 \

Pixel value
g
=

0 100 200 300 400 500 600
Distance along profile

Figure 1.3: A grayscale image of a boy on a Figure 1.4: The intensity along the line seg-
bench obtained from the color image in Fig- ment profile.

ure 1.1. A line in red is added to the image

along which to visualize an intensity profile,

see Figure 1.4.

6 Chapter 1: Introduction

Look at the intensity profile in Figure 1.4. The intensities are ordered from left to right
on the z-axis. This ordering matches the orientation of the chosen line segment. Before
reading further, consider how the line segment is oriented in the image to provide the
shown profile. Is it from the top-left to bottom-right or vice versa?

Try to understand to which pixels in the image the values of the profile correspond.
The stripes on the boy’s sweatshirt are close to the image resolution limit given by the
Shannon sampling theorem, see [Chapter [&:2].

Chapter

The image, its representations
and properties

This chapter introduces basic concepts needed to pursue image processing and analysis.
A 2D grayscale image is represented by a scalar function f of two variables which give
coordinates in a plane: the value of the image function f(z,y) is called the intensity. In
many cases, a 2D image is formed as the result of a projection of a 3D scene into 2D.

2.1 Problems

20

22

23

2.4.

2.5.

2.6.

Explain the notion of the image (continuous image function) f(z,y) or f(z,y,t).
What do parameters x, y, t correspond to? Give several examples of ‘real life’ images
captured using different physical principles.

In signal/image discretization, the distance between (equidistant) samples is gov-
erned by Shannon’s sampling theorem. Explain informally what the theorem says.
Consider both the domain of frequencies and distances between samples. (NB: The
mathematics of the sampling theorem is explained in detail in [Chapter [):3].)

Consider image sampling. As in 1D signal analysis, the distance between equidistant
samples is determined by Shannon’s theorem. In the 2D case, there is one more
issue to be solved: mutual arrangement of samples in the plane. Discuss what
spatial arrangements of samples are commonly used. What are their advantages
and disadvantages? (Note: This question does not concern image quantization.)

What is the advantage of hexagonal grid sampling (similar to a honeycomb)? Why
is the hexagonal spatial arrangement not used in most digitizers?

What is image quantization? How many quantization levels are needed if a human
is observing the image? What artifact appears in the image when there are fewer
quantization levels than necessary?

Why do analog television norms such as NTSC, PAL (which are several decades
old) use interlaced image lines?

8 Chapter 2: The image, its representations and properties

2.7. Explain what is meant by (i) spatial resolution; (ii) spectral resolution; (iii) radio-
metric resolution; and (iv) time (also temporal) resolution.

2.8. Define (i) Additive noise; (ii) multiplicative noise; (iii) Gaussian noise; (iv) impulsive
noise; and (v) salt-and-pepper noise.

2.9. Define a region in a two-dimensional binary image.

2.10. The relation ‘being contiguous’ between two pixels of a binary digital image (i.e.,
those pixels between them there is a path) induces a decomposition of the binary
image (of a set) into classes of equivalence (regions). Which three properties must
the relation ‘being contiguous’ fulfill to be equivalence? Verify these three properties
in the specific case of the relation ‘being contiguous’

2.11. (i) Define a convex region in a 2D binary image; (ii) draw an example of a convex
and a non-convex region; (iii) define a convex hull; (iv) draw a convex hull of an
example non-convex region from question (ii).
Explain the notion of palette in a color image.

Find a grayscale image. Create a palette that makes the image negative. For a
Matlab implementation, see #\:colormap.

I Ip
—_
o

The camera captures a 3D scene and projects it into 2D. The simplest mathematical
approximation of such image capture is the pin-hole model which mathematically
corresponds to perspective projection. A point in 3D (xz,y,z) is projected as a
point (z’,3’) in the image plane. Draw a schematic figure which depicts such a
projection—you can simplify it by one dimension by depicting the situation in the
plane z = 0. Assume that the 3D coordinates (z,y, z) and focal length (i.e., the
distance of the image plane from the center of projection) are known. Derive the
relation for ¢'. Is this relation linear? Why?

2115 An interlaced television signal of 50 half-frames per second is sampled into the
discrete image (matrix) of 500 x 500 pixels in 256 gray levels. Calculate the minimal
sampling frequency in kHz (kilohertz) which has to be used in the frame-grabber
performing analog to digital conversion.

216! TFor each uppercase printed letter of the 26 letter English alphabet, determine the
number of lakes and bays it has. Derive a look-up table that lists the candidate
letters, given the number of lakes and bays. Comment on this quality of this feature
as an identifier of letters.

27 Write a program that computes an image histogram; plot the histogram of a range
of images.

Develop a program that reads an input image and manipulates its resolution in the
spatial and gray domains. Use only subsampling, do not apply any interpolation.
For a range of images (synthetic, of man-made objects, of natural scenes, etc.)
conduct experiments on the minimum resolution that leaves the image recognizable.
Conduct such experiments on a range of subjects.

. Implement chamfering on a rectangular grid, and test it on a synthetic image
consisting of a (black) subset of specified shape on a (white) background. Display
the results for a range of shapes, basing the chamfering on the: (i) Euclidean metric
Dp; (ii) city block metric Dy; and (iii) chessboard metric Dsg.

Implement chamfering on a hexagonal grid and display the results.

