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Preface

This book grew out of our experience in teaching physical chemistry to undergradu-
ate students majoring in chemistry, biochemistry, and the biological sciences. The fol-
lowing objectives, illustrated with brief examples, outline the distinctive features of
this book:

Focus on teaching core concepts. The central principles of physical chemistry
are explored by focusing on core ideas, and then extending these ideas to a variety
of problems. For example, the Gibbs energy, bioenergetics, and chemical
equilibrium are at the heart of thermodynamics and are explored in depth in this
text. Similarly, a very good understanding of quantum mechanics can be obtained
from a few basic systems: the particle in a box, the harmonic oscillator, and the
hydrogen atom. Therefore, care is taken to fully explain and develop these key
systems in order to provide a solid foundation for the student. A similar approach
has been taken in other areas of physical chemistry. The goal is to build a solid
foundation of student understanding rather than cover a wide variety of topics in
modest detail.

Illustrate the relevance of physical chemistry to the world around us. Many
students struggle to connect physical chemistry concepts to the world around them.
To address this issue, example problems and specific topics are tied together to
help the student develop this connection. Biological membranes and the energetics
of ion transport are discussed in a chapter focused on bioenergetics. Fuel cells,
refrigerators, and heat pumps are discussed in connection with the second law of
thermodynamics. Glycolysis, the Krebs cycle, and the electron transport chain are
discussed in a chapter on biochemical equilibria.

Demonstrate the importance of quantum mechanics in the biological sciences.
Many everyday phenomena cannot be understood without quantum mechanics.
The particle-in-a-box model is used to explain why metals conduct electricity and
why valence electrons rather than core electrons are important in chemical bond
formation. The real-world applications of quantum mechanics are in chemical
spectroscopy. In-depth discussions of structural determinations of biomolecules
using multidimensional NMR, the use of Raman spectroscopy to image living cells
with chemical specificity, the use of fluorescence spectroscopy to sequence the
human genome, and the use fluorescence resonance energy transfer (FRET) as a
spectroscopic ruler to measure donor—acceptor distances show the student the
importance of having a solid foundation in quantum mechanics.

Present exciting new science in the field of physical chemistry. Physical
chemistry lies at the forefront of many emerging areas of modern chemical
research. Examples discussed in this text include the use of atomic force
microscopy to obtain nanometer-scale structural information about biological
systems in situ and in real time, the use of single-molecule spectroscopy to
understand kinetics at a molecular level, the use of FRET to determine the
magnitude of the structural change introduced by substrate binding to an enzyme,
and the use of multidimensional NMR to determine biomolecular structures in
solution.
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Preface

* Use Web-based simulations to illustrate the concepts being explored and avoid
math overload. Mathematics is central to physical chemistry; however, the
mathematics can distract the student from “seeing” the underlying concepts. To
circumvent this problem, Web-based simulations have been incorporated as end-
of-chapter problems throughout the book so that the student can focus on the
science and avoid a math overload. These Web-based simulations can also be used
by instructors during lectures. More than 50 such Web-based problems are
available on the course Web site. An important feature is that each problem has
been designed as an assignable exercise with a printable answer sheet that the
student can submit to the instructor. The course Web site also includes a graphing
routine with a curve-fitting capability, which allows students to print and submit
graphical data.

* Show that learning problem-solving skills is an essential part of physical
chemistry. Many example problems are worked through in each chapter. The
end-of-chapter problems cover a range of difficulties suitable for students at all
levels. Conceptual questions at the end of each chapter ensure that students learn to
express their ideas in the language of science.

* Use color to make learning physical chemistry more interesting. Color is
used to enhance both the pedagogy and content of the text. For example, four-color
images are used to enhance the understanding of biochemical cycles, to display
atomic and molecular orbitals both quantitatively and attractively, and to make
complex images such as multidimensional NMR spectra understandable.

This text contains more material than can be covered in a one- or two-semester
course, and this is entirely intentional. Effective use of the text does not require one to
proceed sequentially through the chapters, or to include all sections. Many sections are
self-contained so that they can be readily omitted if they do not serve the needs of the
instructor. The text is constructed to be flexible to your needs, not the other way around.
We welcome the comments of both students and instructors on how the material was
used and on how the presentation can be improved.

Thomas Engel
University of Washington

Gary Drobny

University of Washington
Philip Reid

University of Washington
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Fundamental Concepts
of Thermodynamics

Thermodynamics provides a description of matter on a macroscopic scale. In this approach,
matter is described in terms of bulk properties such as pressure, density, volume, and tem-
perature. The basic terms employed in thermodynamics, such as system, surroundings, in-
tensive and extensive variables, adiabatic and diathermal walls, equilibrium, temperature,
and thermometry, are discussed in this chapter. The usefulness of equations of state, which
relate the state variables of pressure, volume, and temperature, is also discussed for real
and ideal gases.

1.1 What Is Thermodynamics and Why Is It
Useful?

Thermodynamics is the branch of science that describes the behavior of matter and the
transformation between different forms of energy on a macroscopic scale (i.e., the hu-
man scale and larger). Thermodynamics describes a system in terms of its bulk proper-
ties. Only a few such bulk property variables are needed to describe the system, and these
variables are generally obtained via measurements. A thermodynamic description of
matter does not make reference to its structure and behavior at the microscopic level. For
example, 1 mol of gaseous water at a sufficiently low density is completely described by
two of the three macroscopic variables of pressure, volume, and temperature. By con-
trast, the microscopic scale refers to dimensions on the order of the size of molecules.
At the microscopic level, water is a dipolar triatomic molecule, H,O, with a bond angle
of 104.5° that forms a network of hydrogen bonds.

Given that the microscopic nature of matter is becoming increasingly well understood
using theories such as quantum mechanics, why is a macroscopic science like thermody-
namics relevant today? The need to approach problems from a macroscopic point of view
may seem debatable. Indeed, an argument exists for describing physical problems from a
microscopic point of view using quantum or classical mechanics, then deriving macro-
scopic properties statistically. Such a strategy, commonly called the “bottom-up” ap-
proach, is often justifiable in a field such as chemistry where nature is frequently
investigated at the molecular level, but in many fields of engineering and biology, nature
is not viewed exclusively in detail at the molecular level. In these cases, a “top-down”
strategy is followed wherein macroscopic properties are investigated without reference to
the underlying microscopic composition or mechanics of the system. Even if an engineer

1



