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Preface

IT IS A PRIVILEGE TO PRESENT TO OUR READERS the second edition of Plant
Physiology, which follows the first edition by seven years. The challenge of con-
densing, organizing, and synthesizing all the available knowledge in the field was
daunting enough at the time of the first edition; the explosion of progress since
1991 makes these tasks even more demanding for the second edition.

The strength of the second edition, like that of the first, lies primarily with the
outstanding group of scientists who have contributed their expertise and histori-
cal perspectives to this complex effort. They deserve all the credit for selecting the
information that best represents the true conceptual advances in the field of plant
physiology. Our task has been to ensure that all the topics were adequately cov-
ered and that the various topics were presented in a uniform style and level of dif-
ficulty. The editorial division of labor was as follows: E.Z. was responsible for
Chapters 3,4,5,7,8,9, 12, 18, and 25; L.T. was responsible for Chapters 1, 2, 6, 13,
14,15, 16,17,19, 20, 21, 22, 23, and 24; Chapters 10, 11, and 25 have been edited by
both of us. Several of the chapter authors from the first edition did not join us for
this second edition, but their important contributions are still central to many of
the chapters in the book. We wish to thank them for their previous efforts on behalf
of the book: George W. Bates, Donald P. Briskin, Anthony L. Fink, Shimon Gep-
stein, Adrienne R. Hardham, Frank Harold, George H. Lorimer, John W. Radin,
Stanley J. Roux, Thomas David Sharkey, Richard G. Stout, Daphne Vince-Prue, and
Stephen M. Wolniak.

As in the first edition, much of the credit for integration and pedagogical style
belongs to our developmental editor, James Funston. We feel fortunate to have
engaged such a wise, creative, and endlessly patient advisor for both the first and
second editions of Plant Physiology. A major improvement in the preparation of the
second edition has been the convenience of using email and the internet, which



enabled us to track down information much more effi-
ciently than before, often from the comfort of our own
home offices. The availability of email enabled us to
rapidly check the accuracy of information with scientists
spread all over the globe. Email also helped us to make
pedagogical decisions, since we were able to contact
large numbers of people to determine their preferences.
Thus the number of colleagues around the world who
have provided critical input into the preparation of this
book is truly unprecedented.

Perhaps the most important innovation of the second
edition is the new publisher, Sinauer Associates. We
wish to extend our gratitude to Andy Sinauer for his ini-
tial faith in the book and for his continued encourage-
ment during the ensuing months of its preparation; to
our editor Nan Sinauer for her infinite patience, adroit
decision making, and tireless shepherding of the manu-

scripts from first drafts to final copy; and to Suzette
Stephens, Stephanie Hiebert, Chris Small, Janice Holabird,
and Jefferson Johnson for their significant contributions.

Last but not least, we wish to thank our departmen-
tal colleagues, postdoctoral fellows, and students for
their precious help and for enduring the extended peri-
ods of “total immersion” that were often required to get
the job done. Finally, L.T. wishes to thank his wife, Lee
Taiz, whose faith in the project sometimes exceeded his
own, and whose love and support sustained him when-
ever the road became bumpy.

Lincoln Taiz
Eduardo Zeiger
July 1998
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