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Abstract

We study the behavior of maximal geodesics outside a sufficiently large compact set
in a finitely connected, complete and noncompact 2-dimensional Riemannian manifold
(possibly with boundary). The total curvature of such a manifold was first investigated
by S. Cohn-Vossen [Col, Co2]. Assume for simplicity that a complete manifold M is
homeomorphic to R2. He proved in [Col] that if the total curvature of M exists, it is
less or equal to 27. One of our main results (see Theorems B and C in 2.3) states that
if the total curvature of M exists and is strictly less than 27z, then any maximal
geodesic outside a sufficiently large compact set in M forms almost the shape as that
of a maximal geodesic in a flat cone, and its rotation number (originally due to H.

Whitney [Wh]) is controlled by the total curvature.

Key Words and Phrases: geodesics, the Gauss-Bonnet formula, total curvature.
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Introduction

Recall that a topological space is said to be finitely connected if its i-th homotopy
groups are finitely generated for all i (cf. [Bu, §29.6]). Let M be a finitely connected
2-dimensional smooth manifold with finitely connected (but not necessarily compact)
piecewise smooth boundary oM. Then, M has finitely many ends e;, where 1 < j
<k, (i.e. M has k boundary components in the sense of [AS, Chap. I, 36C)]). If
we compactify M by adding at infinity points in 1-1 correspondence with the e;’s, we
get a compact topological manifold with boundary M' := M U {ey, ... ,.ex}. The
ends e;’s are of two types according to whether e; belongs to the boundary oM' or to
the interior Int(M') of M'. In addition suppose that M is a complete Riemannian
manifold. A complete (or as we prefer to say a maximal) geodesic of M is said to be
distant if it is entirely contained into a sufficiently small neighborhood of some e;.
Assume that both the total curvature ¢(M) of M and the total geodesic curvature
k(M) of oM with respect to M are defined and that the sum x(M) + c(M) has
a meaning. Then the curvature at infinity x..(M) of M is defined to be kK.(M) :=
2ny(M) — k(M) — c(M), where (M) is the Euler characteristic of M. By a
suitable generalization of Cohn-Vossen’s theorem (see 3.4 below), one has x..(M) >
mx(0M), where x(0M) is the number of noncompact connected components of
oM. For each end e; there exists an arbitrarily small neighborhood M;' of e; such
that if ej € oM, Mj:=M; - {ej} € M is a Riemannian half plane; if ej €
Int(M"), M; = M — {e;} is a Riemannian half cylinder (see 3.4.2 and 3.4.3 for
definitions of Riemannian half planes and half cylinders). By the Gauss-Bonnet
theorem, each number k(M) is depending only on e; but independent of M;, and

is called the curvature at ;. Applying Cohn-Vossen’s theorem to each M;, one has
n ifeje oM’

0 ifejeInt(M")

Recieved by the editor July 16, 1991.
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2 Takashi SHIOYA

and moreover, by Gauss-Bonnet theorem,

k
KlM) = D, KM
j=1

oM'

When ej € dM’, all maximal geodesics close enough to e; are simple; if k(M)
< 2, then close enough to e; there exist no maximal geodesics; if k.(M;) = 27,
one can not say whether such geodesics exist or not; if x.(M;) > 27, there exists
maximal geodesics arbitrarily close to e; (see Conclusion 7.3). When ¢; € Int(M"),
if x.(M;) = 0, nothing can be said in the absence of further assumptions (see
Remarks and Examples in 2.2 and 2.3); if x.(M;) > 0, there exist maximal geodesics
arbitrarily close to e; (see Corollary to Theorem A in 2.2 and Conclusion 7.3); if
K(M;) € (0,+00), then close enough to ¢; maximal geodesics essentially behaved as
those of a cone having vertex angle equal to k..(M;) in a sense made precise in the
Preliminary Remark of 2.3 (see also Conclusion 7.3); if kw(M;) = +oo, then close
enough to ¢; all maximal geodesics are simple (see Theorem B in 2.3 and Conclusion
7.3). Since each M; is either a Riemannian half plane or a Riemannian half cylinder
and since, according to Remark 3.4.3.2, any Riemannian half cylinder can be
isometrically embedded into a Riemannian plane, the previous general statements are
mere consequences of the main results of this paper concerning Riemannian planes
stated in Chapter 2 and proved in Chapters 4, 5 and 6 and of additional results

concerning Riemannian half planes (see 3.8 and 7.2, see also 7.1 for half cylinders).



Behavior of distant maximal geodesics in 2-dimensional manifolds 3

In the case where M is a Riemannian plane (i.e. homeomorphic to R?) with the
previously introduced notations k.(M) =2m — c(M) € [0,+e], Theorems B and
C stated in Chapters 2 and 3 assert that, if k..(M) > 0, outside a sufficiently large
contractible compact subset K of M (called ‘fat enough’ in Chapter 5), all maximal
geodesics in M are regular in a sense given in Chapter 1, which means that they
behave as those of a cone, of a two-sheeted hyperboloid or of a paraboloid. In general,
the number of double points of such geodesics (which have no triple points) is equal to
intg(7 / ko=(M)) (where intg(-) means the integral part). However, when 7/
K.(M) is an integer, it may happen that this number drops down to 7/ k(M) — 1
(‘the less crossing situation’). Moreover in ‘the more crossing situation’, i.e. when the
number of double points is equal to 7/ k.(M), it may happen that the geodesic
crosses itself over and over again in such a way that it can no longer be called ‘regular’

but only ‘almost regular’ (see 1.10).

areguler geodesic an almost regular geodesic

It is interesting in itself (and also useful for the proof) to notice that, if we partly relax
the constrains on the quantities both of positive and of negative curvature that a
contractible compact subset must contain in order to be called fat enough, one obtains a

larger class of subsets K of M called ‘fat’ outside which all maximal geodesics are
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semi-regular in a sense given in 1.4 (see Chapter 4). Theorem D (see 2.3) and its
corollaries give additional results in the case where M does not have too much positive
curvature and in the case where M has no negative curvature. Corollary to Theorem A
asserts that a Riemannian plane has maximal geodesics arbitrarily close to infinity, a
result which guarantees that Theorems B, C and D are not empty. Theorem A stated in
2.2 and proved in Chapter 6 asserts that the visual diameter of any compact set K C
M looked at from a point p € M tends to zero when p tends to infinity. It seems
that it is not possible to prove Corollary to Theorem A without a control of visual
diameters. Moreover such a result is extended to that for unbounded K, which
implies that the number k.(H) controls whether in a Riemannian half plane H a
maximal geodesic arbitrarily close to infinity exists or not (see 7.2). The result about
the visual images of unbounded K will be published independently.

Since all the proofs given in the present paper are derived from the Gauss-Bonnet
formula and from Cohn-Vossen’s theorem, the statements of this paper clearly extend
to G-surfaces in the sense of Busemann (see [Bu]). Although new, our results should
be considered as elementary. For this reason our presentation tried to be as self-
contained as reasonably possible in order to make the article accessible to beginners.

In Chapter 1 we defined semi-regular, almost regular and regular curves in order to
be able in Chapter 2 to state the main results concerning Riemannian planes. In Chapter
3 we introduce a suitable notion of boundary in order to generalize the Gauss-Bonnet
theorem. In the same chapter we also generalize Cohn-Vossen’s theorem to a large
class of complete 2-dimensional Riemannian manifolds. Chapter 4 (resp. 5) shows that
outside a fat (resp. fat enough) subset of a Riemannian plane M, all maximal
geodesics are semi-regular (resp. almost regular with suitable index). Chapter 6 proves
Theorem A (the statement concerning visual diameter). Chapter 7 generalizes the
previous results to finitely connected Riemannian manifolds with finitely connected

boundary.



1. The semi-regular curves in a differentiable plane

In this paragraph we introduce preliminary notions needed in order to state the main

results of Chapter 2.

1.1. Proper transversal immersion. Let M be any smooth surface. A
differentiable mapping ¢ of a (not necessarily compact) interval / of R into M is
said to be a weakly transversal immersion (tesp. a transversal immersion) if it
satisfies Conditions (i) and (ii) (resp. Conditions (i), (ii) and (iii)).

(i) (immersibility condition) a(z) := % ot)#0forallre .

(ii) (source transversality condition) whenever o(a) = a(b) =p fora # b,
the tangent vectors a(a) and a(b) are linearly independent in T,M.

(iii) (target transversality requirement) The mapping o has no triple points, in
other words there exist no a, b, c € I such that a # b # ¢ # a and that a(a)

= a(b) = a(c).

1.1.1. Lemma. Let & be a proper transversal immersion of a not necessarily
compact interval / into a smooth surface M. Then the set of double points of « is a
discrete subset of M.

O

Suppose from now on that the surface M is diffeomorphic to RZ. Assume for
convenience that M is oriented and suppose that a <b. A crossing point p =
a(a) = a(b) of o will be said to have a positive sign ( sgn(p) = 1 ) when the
basis (a(a),c(b)) has positive orientation and a negative sign ( sgn(p) = —1)

otherwise.
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1.2. Definition. Suppose / =R and let n_(a) (resp. n_()) be the number
(possibly infinite) of double points having positive (resp. negative) sign of a proper
transversal immersion a: R — M and let

n(a) = lim sup | ny(s,1) - n_(s,0) |,

§—-00

1400

where n (s,t) (resp. n_(s,r)) denotes the number of positive (resp. negative)
double points of the closed arc «|[s,z]. Whenever « is such that these three
quantities are not all equal to infinity, the rotation number rot(cx) € N U {oo} is
defined to be the presently introduced quantity n(a), (where N denotes the set of

nonnegative integers).

Remark. Notice that n(c) (and therefore rot() whenever it is defined) does
not depend on the chosen orientation of M, so that the notion of rotation number
makes sense even when M is not assumed to be oriented. Notice also that n(c)
does not depend on the parameterization of « and is an invariant of the compactly
supported regular homotopy class of ¢. Recall that a proper transversal differentiable
immersion a: R — M is said to be compactly supported regular homotopic to the
proper transversal immersion f when o(z) = B(7) for all ¢ outside some open
interval (a,b) C R and when there exists a regular homotopy between «|[a,b] and

Blla,b] fixing a(a) and a(b).

1.3. The order relation between double points. Let o be a proper
transversal immersion of some (not necessarily compact) closed interval of R into M
and let p; and p, be two double points of o such that p; = a(a;) = a(b;) with
a;<b;fori =12 Set p; <p,; whenever [a;,b1] € [az,b2]. This
convention defines a partial order relation on the set of double points of & such that
for each double point p there exists at least one minimal double point g such that g <

p. Notice that, when both the relations p; < p; and p; < p; do not hold, one of
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the two following situations may occur.
(i) [ai.b1]1 n [az,b2] = ¢, in which case p; and p, are said to be

independent.
(i) [ai,.b1] n [az,b,] is a nonempty interval [ # [a;,b;] for i = 1,2, in

which case p; and p; are said to link.

P2
D1 P2 D1

p1 and p; are independent. p1 and p; link.

1.4. Definition. A proper transversal immersion of some (not necessarily
compact) closed interval of R into M is called a semi-regular arc when the set of

double points of «is totally ordered by the previously defined order relation.

A semi-regular arc

In other words, setting n(a) = n,(a) + n_(a) and for all n € N U {}
denoting by [n] the set of all integers i such that 1 <i < n, the proper transversal

immersion « is said to be semi-regular when there exists a sequence of closed



