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Preface

“But you, as a man of science, will have seen
A host of curious things—recall that worm
Which lives only inside a cat or kestrel,

But nonetheless must spend the earliest phase
Of its life-cycle inside a common mouse.

No particular mouse is singled out

To feel the cat’s claw, or the kestrel’s talon,
One that is careful could avoid them both
And die at home, at a venerable age.

But there’s an iron law which so requires,
That there be mice enough to go around
That even the defenceless worm survives
And prospers after many thousand years.”

Madach: The Tragedy of Man
G. Szirtes’ translation

Twelve years ago as a visiting professor I taught a course on Mathemati-
cal Population Dynamics at the Universidad Central de Venezuela in Caracas.
For the past 10 years I have been teaching a broader spectrum Biomathemat-
ics graduate course at the Budapest University of Technology. This book is a
result of these two courses. It is aimed at mathematicians interested in appli-
cations as well as biologists, medical doctors, and agricultural engineers who
have a somewhat higher than average mathematical background. I do not want
to teach biology here; 1 try to present and treat those mathematical methods
that are used to describe dynamical phenomena in biology. As much biological
explanation of the problems is given as seems to be absolutely necessary for a
nonbiologist to understand the situation, and the mathematical formulae are
explained intuitively to aid both nonmathematicians and beginning ones. At
the same time, I do not want to avoid the really difficult topics. The main
mathematical tools applied here are dynamical systems, ordinary and partial
differential equations, and bifurcation theory. Rigorous background material is
often found in the Appendices. It is assumed that the reader has a knowledge
of advanced calculus and linear algebra. Everything else needed is contained
in a concise form in the Appendices. I attempt to cover the most important
branches of biomathematics that are treated by deterministic models, with the
emphasis placed on supraindividual biology. Some branches were deliberately
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excluded, the most important of which, perhaps, deal with the functioning of
the living body (models of the heart, neural networks, etc.). I believe that the
modeling of these systems is very similar to the modeling of complex systems
of technology and, as a consequence, the same ideas apply for the most part.

The first two Chapters deal with population dynamics. The first one shows
models in which time is passing in discrete steps; these are applied, for example,
to modeling the dynamics of insect populations. In this Chapter 1 also treat
a model of a single population with age structure. In the Chapter 2 time is a
continuous variable, and different relations of species interaction, predator-prey,
competition, cooperation etc. are examined. In addition, models are shown that
take into consideration the delay in biological systems, age structure, and spa-
tial distribution. Chapter 3 explores the spread of epidemics using the simplest
Susceptibles-Infectives-Removed model, a model for sexually transmitted dis-
eases, and one for pair formation. The spread of epidemics in a spatial dormain
is also presented. Chapter 4 on evolution explores the fundamental principles of
population genetics, and the problems of evolution leading to the appearance of
living creatures and immunology. Chapter 5 gives an overview of René Thom’s
elementary catastrophe theory whose aim was to model the evolution of the em-
bryo and treats models of pattern formation that explain animal coat markings
in Nature. In Appendix 1 the tools from linear algebra, difference equations,
and stochastic processes that are needed are presented and some treatment of
chaotic dynamics is included. Appendix 2 deals with ordinary differential equa-
tions the emphasis is on stability and bifurcations. Appendix 3 treats partial
differential equations with an emphasis on reaction-diffusion equations and Tur-
ing instability. Appendix 4 contains a light introduction into local Riemannian
geometry, with the purpose of explaining the metric in the phase space of geno-
type frequencies where the equations of selection govern the dynamics.

Some of the figures were prepared with MAPLE-V and some with PHASER,
(Kocak [1989]); this is noted in the figure captions.

I hope that this book (having been kept so slender with considerable effort)
may serve as a good introduction into this fascinating subject and will invoke
interest which then may lead to more in-depth studies and research. I believe
also that it may be used as a textbook for an introductory graduate course.

In the preparation of this volume Tamas Czdran’s comments were extremely
useful. I have learned much on immunology in Gébor Tusnddy’s seminar. Ggbor
Salfer helped to solve the problems that arose in my struggle with computers.
Flora Géczy did an excellent job in preparing the final latex copy and producing
some of the figures. I thank them all. I also thank my wife Kati for her patience
and understanding because the larger part of the time spent writing was robbed
from her.

My work on this book was partially supported by the Hungarian National
Foundation for Scientific Research grant No. T029893 and 'T031716.

Medellin, February 2001 Miklds Farkas
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Chapter 1

DISCRETE POPULATION
MODELS

Population dynamics looks at the problem of how the number, the quantity of
a well-defined group of living creatures, a species or a system of species, that is,
those that share a common habitat, varies in time. Living creatures are born,
reproduce, and die at a certain rate that depends on circumstances, including
their specific genetically determined properties, the quantity of food available,
their own density etc., and in case of a shared habitat, on the properties of
those species with whom they live together. In this chapter we deal first with
species of nonoverlapping generations. This means that the parent generation
has disappeared by the time the next generation is born. One may imagine
some insects that lay their eggs in the soil in the autumn and then die while the
next generation is born the next spring. Next we consider a single species with
discrete age groups.

1.1 Nonoverlapping Generations and Discrete
Time Models

In this Section a single isolated population will be considered first. Its number
or abundance at time ¢ is denoted by N;. Time is measured in discrete units
(seconds, hours, years etc.) and it is assumed that the number of the genera-
tion of the moment (year etc.) ¢t determines the number of the next generation,
that is, the number N;yi. In other words, this means that the previous gen-
erations influence the abundance of the generation at time ¢ + 1 only through
the generation at time ¢. It is also assumed that the circumstances that may
have an effect on reproduction, food, temperature etc. remain the same, for
example, each year is like the previous one. Consider the difference between the
numbers of the (¢t + 1)st and the ¢th generation. If we divide this difference by
the quantity of the #th generation we obtain the per capita growth rate at time



2 Discrete Population Models

i. Tt is usually given in percentages. Population dynamics depends on how this
per capita growth rate at time ¢ depends on the actual size of the population.
The simplest assumption is that this rate is constant. If this constant is nega-
tive then this means that there are fewer in each successive generation. If this
negative rate is constant, the obvious consequence is a population that dies out
rapidly. If this constant is positive then the equation that governs the dynamics
is

(Ney1 — Ny) /[Ne =71,

where the constant 7 > 0 is now the per capita growth rate of the population.
This equation can be written in the form

Negi = (1+7) Ny . (1.1.1)

If we express the number at time ¢ +2 by the number at time ¢ 4+ 1, and then the
number at time ¢ 4+ 3 by the number at time ¢ + 2 and so on, then the number
of the generation at time ¢ + n will be

Nt+n = (]. -+ r)n Nt .

As r > 0, this clearly means that the numbers go to infinity as time increases in-
definitely. If the per capita growth rate is, for example, 2%, then the hundredth
generation numbers 1.021%° = 7.24 times as much as the original one. In Nature
such erponential growth cannot go on indefinitely because some limiting factor
of the environment, lack of food, oxygen, space etc. or simply the adverse effects
of overcrowding, slows down growth sooner or later. We arrive at a more realis-
tic model if we assume that the per capita growth rate is a decreasing function
of the abundance of the population, which equals zero when the size of the pop-
ulation reaches the maximum that can be maintained by the environment. The
simplest way to do this is to set the per capita growth rate as a linear function
of the quantity with negative slope. In a graph of this function, the point where
this line intersects the horizontal axis of the quantity is the maximum amount
the environment can maintain. This value is called the carrying capacity and is
denoted by K> 0. Accordingly, Eq. (1.1.1) is modified to

[Nt+1—Nt)/Nt = T‘(I—Nt/f‘() or
Neyi = Ne(l+7r—rN/K] . (1.1.2)

Here r > 0 is called the intrinsic growth rate of the population. It prevails if
N; 1s small; then the per capita growth rate is approximately equal to r. If we
look at Eq. (1.1.2) we see that in case NV; is less than the carrying capacity K
then N;;; will be larger than Ny, while if N, is larger than K then N, will be
smaller than N;. If N; is equal to K then N;4; will be the same. The variation
of the size of the population according to Eq. (1.1.2) is called logistic dynamics.
Besides N = 0 (when there is no population present), N = K is its equilibrium
point. For certain values of the intrinsic growth rate this point is stable in the
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Figure 1.1.1: The growth rate of the logistic dynamics.

sense that if the population is higher or lower than this value its size goes to K
(see Fig. 1.1.1).

Logistic dynamics has the great advantage that it does not let a population
grow indefinitely, and if the population follows this rule then it settles down in
the long run at a constant value, its carrying capacity. However, Eq. (1.1.2)
has the disadvantage that if a very large value is substituted for N; then Ny,
may be negative, which is meaningless. This difficulty can be overcome by the
application of exponential dynamics:

(Negt — Np) /Ny = " -NE) 0 or Neyy = Npe"G-NYE) 0 0 0
(1.1.3)

Here again, if the size of the population is < K then the next generation will be
larger than the previous one and if the size is larger than the carrying capacity
then the next generation will be smaller, and the population may finally settle
down at K. One may substitute any positive number for N, and the size N;4,
of the next generation will always be positive.

In the three cases discussed in the preceding, the set up is as follows. A
function F(N) = N - f(N) is given such that if we divide it by NV then we obtain
the ratio of the size of the next generation to the actual one: F(N)/N = f(N).
In the first case the latter is constant, in the second it is a linearly decreasing
function, and in the third it is exponentially decreasing. The dynamics starts
at a certain time ¢, which will be taken as 0 in what follows and an initial size
of the population Ny is given. Then the size of the next generation is given by
N; = F(Ng) = Nof (No). The process continues like this. We have arrived
at the concept of the one-dimensional discrete forward dynamical system or
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semiflow that is given by
Nk+l :I;‘(‘Z\r]‘;)7 (k:0,1,2,3,..) . (11.4)

If we substitute successively the obtained values of N into Eq. (1.1.4) we get a
sequence Np, N1, Na, ..., Ni, ..., which is called the path of Ng. It is also the
path of any term Nj in it provided that we start the count of time at t = k.
It may happen that a number F is such that the value of ¥ at F is E, that is,
E = F(E). In this case F is an equilibrium (or fired) point of the dynamical
system, its path is F, E, E,.... We say that the equilibrium point is stable in
the Lyapunov sense if for any Ny that is sufficiently close to E the path of Ny
stays near to E in the whole future. We say that E is asymptotically stable if
it is stable in the Lyapunov sense and for any Ny that is sufficiently close to F
the path of Ny tends to E as time tends to infinity. In Fig. 1.1.2 we show the
graph of a function F, actually the one on the right-hand side of Eq. (1.1.3),
the iteration process (1.1.4) and an asymptotically stable equilibrium.

1D STAIRS:

Figure 1.1.2: The dynamical system (1.1.3) with r = 1.5 and with K =1=F
an asymptotically stable equilibrium (PHASER).

It may happen that a point P is not an equilibrium but after n iterates of F'
one arrives back at P (and n is the least integer for which this happens); this
means that

P=F(F(. F(P))=FoFo.. oF(P)=F"(P). (1.1.5)

If this is the case we say that P is a pertodic point of period n, and its path
1s then a periodic or closed path that closes in after n steps. Naturally, each
point P, = F*(P), (k = 1,2,3,...,n; P = Py = P,) of the path is also a
periodic point of period n. An equilibrium point is a periodic point of period
1. We say that the pertodic path is stable in the Lyapunov sense, respectively,
asymptotically stable if P is a Lyapunov stable, respectively, asymptotically
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Figure 1.1.3: (A): The graph of F(N) = Ne"(=N/K) with r = 2.3, K = 1,
an asymptotically stable 2-periodic path P,@. (B),(C): The graph of F? with
asymptotically stable equilibria P and @ (PHASER).

stable equilibrium point of the dynamics defined by function F”. That it is an
equilibrium of F" is clear from Eq. (1.1.5). If the period is 2, say, then this means
that F maps P into a point @ and @ into P. Then F(Q) = F(F(P)) = P, and
also F(P) = F(F(Q)) = Q. When the closed path P, Q is asymptotically stable
then each path starting near to it tends to it, and each path of the dynamics
determined by F? and starting near to P or @, respectively, tends to P or @,
respectively. Figure 1.1.3 A shows the graph of the right-hand side of Eq. (1.1.3)
with K = 1 and » = 2.3. In this case the dynamics has an asymptotically stable
periodic path of period 2. Figure 1.1.3 B show the graph of the second iterate of



6 Discrete Population Models

this function with its two asymptotically stable equilibrium points, which form
the graph of the 2-periodic path on (A).

When one observ es that an insect population is larger every second year
and smaller every first one then it may seem to be reasonable to model its
dynamics by a one-dimensional (1D) discrete semiflow with an asymptotically
stable 2-periodic path.

In Appendix 1.2 the 11} discrete forward dynamical systems are treated in
some detail mainly because, besides their stable equilibria and periodic paths,
they may present chaotic dynamics that, in such systems, can be studied rel-
atively easily. Chaotic dynamics is briefly described in the appendix and how
it may arise by an infinite sequence of period doubling bifurcations is discussed.
Chaotic dynamics is now the focus in many branches of science. For example,
if we have an insect population (whose subsequent generations appear yearly)
that achieves a maximum population size every fourth year then we may try to
describe its dynamics by a forward dynamical system that has a stable period-4
trajectory. If in case of an insect population one observes that the numbers
(quantities) of subsequent populations vary chaotically, then one may draw the
conclusion that the dynamics of the population may be modeled by a semiflow
in the domain of the parameter where its dynamics is ¢ haotic. Figure 1.1.4
shows the stable 4-periodic path of system (1.1.3) when » = 2.65 and K = 1;
Fig. 1.1.5 shows the stable 8-periodic path when r = 2.67 and K = 1; and
Fig. 1.1.6 shows the chaotic stage when r = 3.3 and K = 1.

-

\\

——

Figure 1.1.4: The stable 4-periodic path of system (1.1.3) at r = 2.65 and K = 1
(PHASER).

Discrete forward dynamical systems also can be applied in describing the
dynamics of an ecological comm unity consisting of interacting populations
with nonoverlaping generations. In such a situation we speak of higher di-
mensional discrete semiflows. Here we are to treat a two-dimensional (2D)
predator-prey system denoting the quantity of prey and predator at timet = k
(k=0,1,2,3,...) by Ny and P4, respectively. In what follows we shall speak
about the relative growth Ni41 /N or Pyy1/Ps of the Tespective species instead
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Figure 1.1.5: The stable 8-periodic path of system (1.1.3)at r=267Tand K = 1
(PHASER).

of the per capita growth rate. We want to have a model describing the interac-
tion of the two species with the property that if there is no predation, P = 0,
the system should reduce to the exponential dynamics of system (1.1.3) with
respect to the prey and if there are predators present then they should reduce
the relative growth of prey by a factor e=*F where a is a positive number, so
that e=2F is < 1. Further, in case of the predator we suppose that its relative
growth is proportional to the quantity of prey (food) available but the factor of
proportionality is decreasing with the quantity of predator due to the, so called
intraspecific competition in the predator population. An often studied model
with these basic properties is

Niyy = NyerO-Ne/E=Pea/r)  p (1—e=2P), (1.1.6)

where a > 0 has already been described: e~ is a kind of predation rate, where
one unit of predator decreases the relative growth of prey by this factor; K>0 is
the carrying capacity as in the preceding: if there is no predation, prey can grow
in numbers up to this value in the long run (if there are predators present then,
clearly, the exponential factor in the prey equation, that is, the relative growth
of prey becomes < 1 before N can reach the value of the carrying capacity, in
other words, prey begins to decrease earlier); » > 0 is again the intrinsic growth
rate of prey: if the quantities of prey and predator are small (and also r is
small), then the exponential factor is /s 1+ r, which may be called the intrinsic
relative growth because, in this case Niy1/Ne = ¢ &~ 1+ r. If we look now



8 Discrete Population Models

! =1
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Figure 1.1.6: The chaos of system (1.1.3) at r = 3.3 and K =1 (PHASER).

at the predator equation and divide both sides by Py we see that the relative
growth of the predator is given by the function

g(N,P)=N(1—-e")/P. (1.1.7)

Thus, the relative growth is proportional to the quantity of prey but the factor of
proportionality (1 — e~P) /P is a decreasing positive function of the predator
quantity, its imit at P = 0 is @, and its limit, as P tends to infinity, is zero.
The dynamics of the predator-prey system (1.1.6) is generated by the pair of
functions

(F(N, P),G(N, P))= (Nf(N, P), Pg(N, P)),

where f(N,P) = er(1=N/K=Pa[r) and the function ¢ is given by Eq. (1.1.7).
We discuss now the dynamics of this 2D semiflow studied by Beddington et
al. (1975); background material is contained in Appendix 1.2. Here we mention
only that equilibria, periodic trajectories, and stability can be defined in complete
analogy to how this was done in the case of 1D semiflows. First it is to be noted,
that system (1.1.6) inherited the property of the 1D exponential dynamics that
if starting from a positive (N, P) the trajectories stay positive, therefore, in
what follows the nonnegativity of N and P will always be tacitly assumed. If
there are no predators, that is, we start from a point (N, 0), then the trajectory
stays on the N axis. If there is no food, that is, we start from a point (0, P),
then the next and all subsequent generations of the predator will be extinct and
the predator dies out.

The equilibria of the system will be determined next. It is easy to see that
(0,0) and (K, 0) are fixed points. In order to find any equilibria in the interior
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of the positive quadrant of the plane N, P we divide the first equation of (1.1.6)
by Ny, the second one by P, and make the right-hand sides equal to one (the
requirement is that Ngy1/Nk = Piy1/Pe = 1). The system of equations that is
to be satisfied by the coordinates is then
er(l—N/K—Pa/r) - 1 , N (1 _ e—aP) /P =1 ,
or
N/K+Pafr = 1, N=P/(1-eF). (1.1.8)

The straight line determined by the first equation and the graph of the second
equation can be easily drawn; see Fig. 1.1.7. The figure shows that there is an
intersection in the positive quadrant only if 1/a < K, that is,

ak >1. (1.1.9)

Pt

r/a]

0* k—
3
TT 170 K

Figure 1.1.7: The phase portrait of system of equations (1.1.6) with the zero
growth rate “isoclines” of prey and predator. The arrows show the direction in
which the respective point moves.

z v

This will be assumed in the sequel. It is also clear that if this condition holds
then there is just one fixed point in the positive quadrant. The straight line and
the other graph are important not only for finding the equilibrium point graph-
ically, but they are the curves on which the relative growth of prey, respectively,
predator is one. Above the straight line the relative growth of prey is < 1, that
is, the prey is decreasing; below the line the relative growth is > 1, that is, the
number of prey is increasing. This is intuitively reasonable; above the line there
are too many predators or too many prey, resulting in a saturating effect in
view of the intraspecific competition within the prey species. Above (and to the
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left, of) the other graph the relative growth of predators is < 1, with predators
decreasing because there are too many of them for the available food. To the
right of (and below) this graph there is an abundance of food and relatively lit-
tle competition within the predator species, resulting in a relative growth > 1.
The stability analysis of the fixed points is carried out in Appendix 1.3. One
has to linearize the system at the respective fixed point, that is, generate the
Jacobi matrix of functions F and G and check the location of the eigenvalues.
If the moduli of the eigenvalues are < 1, then the fixed point is asymptotically
stable. It turns out that for any feasible choice of the parameters of the sys-
tem the equilibria (0,0) and (K, 0) are unstable. The equilibrium point inside
the positive quadrant (denoted by E in Fig. 1.1.7) is asymptotically stable for
relatively small values of the intrinsic growth rate r of the prey but as r is in-
creased it loses its stability and at certain values of the parameters a and K the
system may have periodic trajectories of high periods and behave chaotically in
a bounded domain of the phase plane N, P. Figure 1.1.8 shows four different
ways this system may behave at various choices of the parameters: (A) it has
an asymptotically stable equilibrium point; (B) there is a closed invariant curve
that attracts the trajectories but the motion on the curve itself seems to be
irregular, that is, “chaotic”; (C) it has an asymptotically stable periodic trajec-
tory of period 20; and (D) there is a bounded region of sharp contour in the
phase plane inside which the dynamics seems to be chaotic.

(A)



