% ~ theeclipse series

eclipseRT

OSGi and Equinox

Creating Highly Modular Java™ Systems

Jeff McAffer « Paul VanderLei « Simon Archer

Series Editors Jeff McAffer « Erich Gamima - John Weigand

OSGi and Equinox

Creating Highly Modular Java™ Systems

Jetf McAffer '

Paul VanderLei M b DALY
! f T |

Simon Archer / ‘)\ I j

vvAddison-Wesley

Upper Saddle River, NJ ® Boston ® Indianapolis ® San Francisco
New York ® Toronto ® Montreal ® London ® Munich ® Paris ® Madrid
Capetown ® Sydney ® Tokyo ® Singapore ® Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419

corpsales@pearsontechgroup.com
For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
OSGi and Equinox : creating highly modular Java systems / Jeff McAffer,
Paul VanderLei, Simon Archer.
p- cm.

Includes index.

ISBN 0-321-58571-2 (pbk. : alk. paper)
1. Java (Computer program language) 2. Computer software—Development.
I. VanderLei, Paul. II. Archer, Simon (Simon J.) III. Title.

QA76.73.J38M352593 2010

005.2'762—dc22

2009047201

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax: (617) 671-3447

ISBN-13: 978-0-321-58571-4

ISBN-10: 0-321-58571-2

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing February 2010

OSGi and Equinox

To my brother Ray
—Jeff McAffer

To Elizabeth and our four bundles:

Andrew, Bryant, Maria, and Josie
—Paul VanderLei

To my parents for their continual support
and encouragement in all my endeavors
—Simon Archer

Foreword

My role as the Chief Technology Officer of SpringSource brings me into frequent
contact with companies building enterprise applications: many familiar names from
the Fortune 500, and a whole host of others besides. If there is one thing you
quickly learn, it is that the world of enterprise applications is messy and complex.
Even four to five years ago, customers adopting Spring were asking us for ways
to help them manage the size and complexity of the applications they were build-
ing. Large team sizes and applications with hundreds or thousands of internal
components (Spring beans) were not uncommon. The pressures on enterprises to
deliver increasingly sophisticated applications, in shorter and shorter time frames,
have only been growing since then. In many cases applications are now always
live and are constantly evolving. The move to deliver software “as a service”—
internally or externally—can only accelerate this trend.

In the enterprise Java landscape, the traditional unit of deployment for an
enterprise application is a web application archive (WAR) file. A number of com-
mon themes arise in my discussions with enterprise development teams:

O The WAR file as a single large unit of packaging and deployment is slowing
down development processes and making it more difficult to structure large
development teams since everything must come together in a single packaging
step before anything can be deployed.

O WAR files are getting too large and unwieldy—a typical enterprise application
may have literally hundreds of third-party dependencies, all packaged inside
the WAR file. This has an adverse effect on upload and deployment times.

O Attempting to tackle complexity by deploying multiple WAR files side by side
in the same container leads to problems with heap usage in the JVM since
each WAR file has its own copy of all the dependencies, even though many
of them could in theory be shared.

O When deploying WAR files side by side, there is no easy way to share com-
mon services.

XxXi

xXii Foreword

O The WAR file as the smallest unit of change means that changes in large
enterprise applications cannot be easily isolated and contained.

O Attempts to introduce “self-policed” (i.e., unenforced) modularity con-
straints into a design typically fail, despite best intentions.

To help manage the large team sizes and complex requirements of modern
enterprise applications, it is clear that we need a more principled way to “divide
and conquer.” Something that lets us encapsulate well-defined parts of the system
as modules with hidden internals and carefully managed externals. Something
that enables those modules to be packaged and deployed individually without
forcing us to revise the whole universe. Something that provides a principled
mechanism for bringing those modules together in a running system, and that can
cope with the changes introduced by continuous evolution.

Facing these requirements back in 2005, it was an easy decision at Spring-
Source (then Interface21) to turn to OSGi, the “dynamic module system for
Java,” as the foundation technology for modular enterprise applications. Even
then, the OSGi Service Platform was already mature and proven in industrial set-
tings, as well as being lightweight through its heritage in embedded systems.

The modularity layer of OSGi provides a mechanism for dividing a system
into independent modules, known as bundles, that are independently packaged
and deployed and have independent lifecycles. This solved a part of the problem
for us—helping to keep the implementation types of a module private, and expos-
ing only types that form part of the public interface of a module. We wanted
enterprise developers to continue developing their applications using Spring, of
course, and through the Spring Dynamic Modules’ open-source project created a
simple model whereby each module had its own set of components (Spring
beans). Some of those components are private to the module, but some should be
made public so that components in other modules can use them. The OSGi ser-
vice layer provides an answer to this problem, promoting an in-memory service-
oriented design. Components from a module can be published in the OSGi service
registry, and from there other modules can find and bind to those services. OSGi
also provides the necessary primitives to track services that may come and go
over time as modules are installed, uninstalled, and upgraded.

The next stage in our journey with OSGi was the introduction of the Spring-
Source dm Server: an enterprise application server that is not only built on top of
OSGi, but critically also supports the deployment of applications developed as a set
of OSGi bundles. Spring Dynamic Modules works with any compliant OSGi Ser-
vice Platform implementation, but for the dm Server we had to choose an OSGi
Service Platform as the base on which to build. We chose to build on Equinox,
the Eclipse implementation of the OSGi Service Platform, and also the reference

Foreword

XXiii

implementation for the core OSGi specification. The open-source nature of Equi-
nox fit well with our own open-source philosophy and has been invaluable in
enabling us to work closely with the developers of Equinox and submit patches
and change requests over time. The widespread adoption of Equinox (as the
underpinnings of Eclipse, to name but one example) gave us confidence that it
would be battle-hardened and ready for enterprise usage.

I am seeing a strong and growing serious interest in OSGi among companies
large and small. Building on OSGi will provide a firm foundation for dividing
your application into modules, which in turn will help you structure the team(s)
working on it more effectively. “Organization follows architecture” in the sense
that your ability to divide a complex application into independent pieces also
facilitates the structuring of team responsibilities along the same lines. In other
scenarios, your teams may be fixed, and you need an architecture that enables
those teams to work together most effectively. Again, a principled basis for divid-
ing a system into modules can facilitate that. With OSGi as a basis, your unit of
packaging and deployment can become a single module, removing bottlenecks in
the process and helping to minimize the impact of change. OSGi is also incredibly
well suited to product-line engineering, and to situations where you need to pro-
vide an extension or plug-in mechanism to enable third parties to extend your
software.

The future for OSGi looks bright. Version 4.2 of the specification has just
been released, and the OSGi Core Platform and Enterprise Expert Groups are
very active. A glance at the membership of the OSGi Alliance and the composi-
tion of the expert groups tells you just how seriously enterprise vendors are tak-
ing it. I am confident that the investment of your time in reading and studying
this book will be well rewarded. It is my belief that OSGi is here to stay. A firm
grasp of the strengths—and the weaknesses—of the OSGi Service Platform will
prove invaluable to you on your journey toward creating agile, modular software.

—Adrian Colyer
CTO, SpringSource
October 2009

Preface

OSGi is a hot topic these days; all the major Java application server vendors have
adopted OSGi as their base runtime, Eclipse has been using OSGi as the basis of
its modularity story and runtime for at least the past five years, and countless oth-
ers have been using it in embedded and “under the covers” scenarios. All with
good reason.

The success of Eclipse as a tooling platform is a direct result of the strong
modularity enshrined in OSGi. This isolates developers from change, empowers
teams to be more agile, allows organizations to change the way that they develop
software, and lubricates the formation and running of ecosystems. These same
benefits can be realized in any software domain.

The main OSGi specification is remarkably concise—just 27 Java types. It is
well designed, and specified to be implemented and used in real life. Adoption of
OSGi is not without challenges, however. Make no mistake: Implementing highly
modular and dynamic systems is hard. There is, as they say, no free lunch. Some
have criticized OSGi as being complicated or obtuse. In most cases it is the problem
that is complex—the desire to be modular or dynamic surfaces the issues but is not
the cause. Modularizing existing monolithic systems is particularly challenging.

This book is designed to both highlight such topics and provide knowledge,
guidance, and best practices to mitigate them. We talk heavily of modularity,
components, and dynamism and show you techniques for enhancing your sys-
tem’s flexibility and agility.

Despite using OSGi for many years, participating in writing the OSGi speci-
fications, and implementing Equinox (the OSGi framework specification refer-
ence implementation), during the writing of this book we learned an incredible
amount about OSGi, Equinox, and highly modular dynamic systems. We trust
that in reading it you will, too.

XXV

XXVi Preface

About This Book

This book guides up-and-coming and established OSGi developers through all
stages of developing and delivering an example OSGi-based telematics and fleet
management system called Toast.

We develop Toast from a blank workspace into a full-featured client and
server system. The domain is familiar to most everyone who has driven a car or
shipped a package. Telematics is, loosely speaking, all the car electronics—radio,
navigation, climate control, and so on. Fleet management is all about tracking
and coordinating packages and vehicles as they move from one place to another.

The set of problems and opportunities raised allows us to plausibly touch a
wide range of issues from modularity and component collaboration to server-side
programming and packaging and delivery of highly modular systems. We create
stand-alone client applications, embedded and stand-alone server configurations,
and dynamic enhancements to both. This book enables you to do the same in
your domain.

Roughly speaking, the book is split into two sections. The first half, Parts I
and II, sets the scene for OSGi and Equinox and presents a tutorial-style guide to
building Toast. The tutorial incrementally builds Toast into a functioning fleet
management system with a number of advanced capabilities. The tutorial is writ-
ten somewhat informally to evoke the feeling that we are there with you, working
through the examples and problems. We share some of the pitfalls and mishaps
that we experienced while developing the application and writing the tutorial.

The second half of the book looks at what it takes to “make it real.” It’s one
thing to write a prototype and quite another to ship a product. Rather than leav-
ing you hanging at the prototype stage, Part IIl is composed of chapters that dive
into the details required to finish the job—namely, the refining and refactoring of
the first prototype, customizing the user interface, and building and delivering
products to your customers. This part is written as a reference, but it still includes
a liberal sprinkling of step-by-step examples and code samples. The goal is both
to dive deep and cover most of the major stumbling blocks reported in the com-
munity and seen in our own development of professional products.

A final part, Part IV, is pure reference. It covers the essential aspects of OSGi
and Equinox and touches on various capabilities not covered earlier in the book.
We also talk about best practices and advanced topics such as integrating third-
party code libraries and being dynamic.

OSGi, despite being relatively small, is very comprehensive. As such, a single
book could never cover all possible topics. We have focused on the functions and
services that we use in the systems we develop day to day under the assumption
that they will be useful to you as well.

Preface Xxvii

OSGi, Equinox, and EclipseRT

The OSGi community is quite vibrant. There are at least three active open-source
framework implementation communities and a wide array of adopters and
extenders. The vast majority of this book covers generic OSGi topics applicable
to any OSGi system or implementation. Throughout the book we consistently use
Equinox, the OSGi framework specification reference implementation, as the
base for our examples and discussions. From time to time we cover features and
facilities available only in Equinox. In general, these capabilities have been added
to Equinox to address real-world problems—things that you will encounter. As
such, it is prudent that we discuss them here.

Throughout the book we also cover the Eclipse Plug-in Development Envi-
ronment (PDE) tooling for writing and building OSGi bundles. PDE is compre-
hensive, robust, and sophisticated tooling that has been used in the OSGi context
for many years. If you are not using PDE to create your OSGi-based systems, per-
haps you should take this opportunity to find out what you are missing.

Finally, Eclipse is a powerhouse in the tooling domain. Increasingly it is being
used in pure runtime, server-side, and embedded environments. This movement
has come to be known as EclipseRT. EclipseRT encompasses a number of tech-
nologies developed at Eclipse that are aimed at or useful in typical runtime con-
texts. The Toast application developed here has been donated to the Eclipse
Examples project and is evolving as a showcase for EclipseRT technologies. We
encourage you to check out http://wiki.eclipse.org/Toast to see what people have
done to and with Toast.

Audience

This book is targeted at several groups of Java developers. Some Java programming
experience is assumed, and no attempt is made to introduce Java concepts or syntax.

For developers new to OSGi and Equinox, there is information about the ori-
gins of the technology, how to get started with the Eclipse OSGi bundle tooling,
and how to create your first OSGi-based system. Prior experience with Eclipse as
a development tool is helpful but not necessary.

For developers experienced with writing OSGi bundles and systems, the book
formalizes a wide range of techniques and practices that are useful in creating
highly modular systems using OSGi—from service collaboration approaches to
server-side integration and system building as part of a release engineering pro-
cess, deployment, and installation.

For experienced OSGi developers, this book includes details of special fea-
tures available in Equinox and comprehensive coverage of useful facilities such as

XXViii Preface

Declarative Services, buddy class loading, Google Earth integration, and the
Eclipse bundle tooling that make designing, coding, and packaging OSGi-based
systems easier than ever before.

Sample Code

Reading this book can be a very hands-on experience. There are ample opportu-
nities for following along and doing the steps yourself as well as writing your
own code. The companion download for the book includes code samples for each
chapter. Instructions for getting and managing these samples are given in Chapter 3,
“Tutorial Introduction,” and as needed in the text. In general, all required mate-
rials are available online at either http://eclipse.org or http://equinoxosgi.org. As
mentioned previously, a snapshot of Toast also lives and evolves as an open-
source project at Eclipse. See http://wiki.eclipse.org/Toast.

Conventions

The following formatting conventions are used throughout the book:

Bold—Used for UI elements such as menu paths (e.g., File > New > Project)
and wizard and editor elements

Italics—Used for emphasis and to highlight terminology

Lucida—Used for Java code, property names, file paths, bundle IDs, and the
like that are embedded in the text

Lucida Bold—Used to highlight important lines in code samples

Notes and sidebars are used often to highlight information that readers may
find interesting or helpful for using or understanding the function being described
in the main text. We tried to achieve an effect similar to that of an informal pair-
programming experience where you sit down with somebody and get impromptu
tips and tricks here and there.

Feedback

The official web site for this book is http://fequinoxosgi.org. Additional informa-
tion and errata are available at informit.com/title/0321585712. You can report
problems or errors found in the book or code samples to the authors at
book@equinoxosgi.org. Suggestions for improvements and feedback are also very
welcome.

Acknowledgments

It is impossible to write a book such as this without the cooperation and help of
a vast number of people. In our case, virtually the entire Equinox team contrib-
uted directly to the end result through conversations, help with code and con-
cepts, bug fixes, manuscript review, or just general support.

A few individuals contributed exceptional amounts of time and brain-power
to this project, and we extend our heartfelt thanks to them here:

Tom Watson—Tom is the driving force behind Equinox and is very active in
the OSGi specification community. His pragmatic approach and level head have
brought you Equinox and us a guiding hand in the creation of this material.

Chris Aniszyzck—Chris has brought his diverse passions to bear on PDE, the
tooling that makes OSGi and Equinox a pleasure to program. The creation
of this book drove many new use cases and requirements. Chris eagerly
pushed PDE to be even more of a bundle development environment, making
life easier for all of us.

Ian Bull—Ian applied his pedagogical skill and attention to detail on all
things related to p2, packaging, and building, making the whole process of
building and delivering OSGi functionality tractable.

Stoyan Boshev—Stoyan is the guiding hand behind the Equinox Declarative
Services implementation. DS figures heavily in this book and the sample code.
Stoyan spent countless hours implementing DS and working with us to bring
its power to you.

A number of people provided portions of the book’s sample code or in-depth
review and guidance on technical elements of the content. In particular, D]
Houghton and Scott Admiraal completed exhaustive testing and review of the
tutorial sections, saving our behinds in the process. Rafael Oliveira Nobrega and
Chris Aniszyzck contributed hugely to the creation of Declarative Services tooling,
making DS usable by mere mortals. Andrew Niefer, Pascal Rapicault, Simon Kaegi,

XXiX

XXX

Acknowledgments

and Scott Lewis all contributed fixes, samples, and guidance on technologies
ranging from PDE Build and p2 to server-side OSGi to ECE Patrick Dempsey
contributed the Crust code and offered tireless support on all things Mac-related.
BJ Hargrave, the steady hand of OSGi, patiently discussed any number of design
points, best practices, and coding approaches.

We were also fortunate to have the Eclipse community and a number of peo-
ple who reviewed chapters or provided valuable input and help. These include
Joel Rosi-Schwartz, Benjamin Muskalla, Kevin Barnes, Grant Gayed and the
SWT team, Ralf Sternberg, Matt Flaherty, the readers of the early drafts on
Rough Cuts, and all the people involved in developing the Toast example code.

Of course, no book project is possible without a publishing team. We were
lucky to have Greg Doench as the enduring editor of the Eclipse Series along with
Michelle Housley, Barbara Wood, Elizabeth Ryan, and the whole crew at Addison-
Wesley who made this a relatively painless and quite enjoyable experience.

The authors would like to individually acknowledge the following people:

Jeff McAffer: Nancy, Sydney, and Toby, you are the loves of my life. Mom,
Dad, and Val, I love you fiercely; you made me what I am today and T am

thankful. The entire EclipseSource team, thanks for giving me the room to

move and being generally enthusiastic around Toast and this project.

Paul VanderLei: Id like to thank my partners at Band XI International—John
Cunningham, Brett Hackleman, Patrick Dempsey, and James Branigan—for
generously providing me the time to complete this project. Thanks, too, to
my wife and children for their patience and love. Finally, ’'m forever grateful
to my father, whose encouragement and sage counsel have shaped my entire
career.

Simon Archer: Undertaking to write a book such as this involves a huge
amount of time, dedication, and sacrifice. While I am grateful for my coau-
thors, Jeff and Paul, for their time and dedication to this project, it is to my
wife, Lisa, and my children, Thomas and Emma, that I owe the most grati-
tude since they are the ones who made all the sacrifices. Thank you for your
constant love and support and for allowing me the time to work on the
book—I am forever in your debt.

Beyond this book, OSGi would not be what it is today without the following
people:

BJ Hargrave—B] is the CTO at the OSGi Alliance and has been driving the
technology since the beginning. He was the lead for the IBM OSGi implemen-
tation, SME, that was donated to Eclipse as the forerunner of Equinox. He
continues to promote and guide OSGi as it evolves beyond its original domain.

Acknowledgments XXXi

Peter Kriens—Peter is the OSGi Evangelist and a longtime leader of the OSGi
community. He fulfills his evangelical role with style and energy that are
inspiring. The continuity and clarity that we see in the OSGi specifications
are a direct result of Peter’s editorial and design skill.

Tom Watson—Tom is the co-lead and heavy lifter in the Equinox OSGi
project at Eclipse and a valued member of the OSGi expert groups. He is
responsible for the entire framework implementation and many of the add-
on facilities. His pragmatism and thoroughness have made Equinox what it
is today.

Richard Hall—Richard is the lead of the Apache Felix project and is very
active in the OSGi specification process. Felix is an evolution of the Oscar
project, the first open-source OSGi framework implementation and an inspi-
ration to the Equinox team as they looked to adopt OSGi. The alternative
viewpoint provided by the Felix project continues to enrich the specification
and implementation process.

About the Authors

Jeff McAffer co-leads the Eclipse RCP and Equinox OSGi projects and is CTO
and cofounder of EclipseSource. He is one of the architects of the Eclipse Plat-
form and a coauthor of The Eclipse Rich Client Platform (Addison-Wesley). He
co-leads the RT PMC and is a member of the Eclipse Project PMC, the Tools
Project PMC, and the Eclipse Architecture Council and a former member of the
Eclipse Foundation Board of Directors. Jeff is currently interested in all aspects
of Eclipse components, from developing and building bundles to deploying,
installing, and ultimately running them. Previous lives include being a Senior
Technical Staff Member at IBM; being a team lead at Object Technology Interna-
tional covering work in Smalltalk, distributed/parallel OO computing, expert sys-
tems, and metalevel architectures; and getting a Ph.D. from the University of
Tokyo.

Paul VanderLei is a partner at Band XI International. He has more than
twenty-five years of software engineering experience with an emphasis on object-
oriented design and agile practices. He is well known for his innovative yet
straightforward engineering solutions to complex problems. After earning his
M.S. in computer science from Arizona State University, he joined Object Tech-
nology International and worked on a wide range of Smalltalk-based systems.
After OTD’s acquisition by IBM, Paul developed embedded Java applications and
user interfaces for the automotive and medical industries as a founding member
of IBM’s Embedded Java Enablement Team. He has been using OSGi in commer-
cial applications for over ten years. He lives in Grand Rapids, Michigan, with his
wife and four children.

Simon Archer has more than sixteen years of software engineering experience
with an emphasis on object-oriented design, agile practices, and software quality.
After earning his B.Sc. in computer science from the University of Portsmouth, UK,
he worked as a Smalltalk developer at Knowledge System Corporation and later
at Object Technology International. While at OTT in 2000, Simon began working

XXXiii

XXXV

About the Authors

with and teaching OSGi in areas such as telematics and RFID. Today he works
for IBM Rational, using OSGi to build collaborative development tools for the

Jazz Foundation project. He lives in Cary, North Carolina, with his wife and two
children.

