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Preface

Without mathematics one will never penetrate to the depths of philosophy.
Without philosophy one will never penetrate to the depths of mathematics.
Without both one will never penetrate to the depths of anything.

Leibniz

t has long been held that anyone who aspires to be edu-

cated must study mathematics. We still believe it, and this

book is intended to be a source book for those who want to
see what mathematics can contribute to a liberal education. In
particular, we have in mind those college students who plan to
take just one or two semesters of mathematics. Perhaps they
want to satisfy a distributive requirement, or perhaps they are
prospective elementary school teachers who need a broadened
and deepened perspective on mathematics.

A number of books have addressed themselves to this audi-
ence. We think they generally miss the mark for either of two
reasons. Some try to survey the content of mathematics, offering
a smorgasbord from which users may choose according to their
taste. Such books are often superficial, although this is not our
principal objection. The availability of interesting and potentially
practical topics is not the only reason—or perhaps even the
main reason—great thinkers insisted that educated people
should study mathematics. They believed, as we believe, that
the study of mathematics can help us to learn something about
thinking itself: how to state our problems clearly, sort out the
relevant from the irrelevant, argue coherently, and abstract some
common properties from many individual situations. It is toward
these goals that we wish to move.

This brings us to the second kind of book available for the
purposes we have in mind. This type of book emphasizes the
methodology rather than the content of mathematics. Attention is
focused on how we think, rigor and clarity, common methods of
proof, the way in which great mathematical ideas have devel-
oped, and the foundations of mathematics. We have been greatly
impressed with many of these books—in particular, mention
should be made of the influence of such writers as Polya,
Wilder, and Richardson. Books of this type, however, have one
drawback: they are too difficult for the audience we have in
mind.
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PREFACE

We have tried to steer a middle course. Insofar as it was con-
sistent with maintaining a light, readable, often humorous style
that would appeal to our audience, we have selected topics that
can be presented in some depth. Moreover, we have continu-
ally addressed ourselves to the larger contention that mathe-
matics is the ideal arena in which to develop skill in the areas of
information organization, problem analysis, and argument
presentation.

It is our belief, not shared (we are sad to say) by all edu-
cators, that a course developed along the lines of this book
would be an excellent preparation for an elementary school
teacher. We feel that our text, in its emphasis on lively problems
and its attention to those mathematical concepts judged to be
essential knowledge for all educated people, offers an attractive
alternative to the dreary routine involving sets, distinguishing
between numbers and numerals, and the associative law of
addition—the usual fare in texts designed for teachers. The
necessary material about number systems should, of course, be
included in such a course.

A WORD ABOUT THE TITLE

We chose the title Faces of Mathematics for two reasons. First,
we wanted to emphasize the fact that mathematics was devel-
oped by human beings, real people with real faces. True, they
may have had special talents, but on the whole they lived their
lives subject to the same constraints as anyone else. Results in
mathematics do not arise through divine revelation; they repre-
sent the hard work of individual men and women. The faces and
brief biographies of many of the most significant contributors to
this field appear on the following pages.

Second, we wanted to suggest the analogy that mathematics
is like a finely cut diamond; it must be seen from several sides
to be fully appreciated. Each view exposes a new face with its
own distinctive features. Four of these faces—solving problems,
finding order, building models, and creating abstractions —
reflect those activities most characteristic of mathematicians. We
have organized our book around these four faces.

A SPECIAL WORD TO STUDENTS

Many years of teaching have convinced us that most students
who fall within this book’s intended audience approach mathe-
matics with fear and trembling. We have made every effort to
ease this anxiety by using simple examples, clear explanations,
and a limited technical vocabulary. Our aim is to demonstrate
that mathematics is interesting, relevant, and learnable.

We believe that problem solving is the heart of mathematics.



PREFACE

The great mathematicians were problem solvers. Every person,
be he mathematician, painter, scientist, or carpenter, must solve
problems; it is part of being alive. For this reason, we begin our
book with strategies for problem solving. Problems, moreover,
are the unifying thread that holds our book together. Most
sections begin with a problem; every section ends with a host of
problems for you to try. They are carefully arranged in order of
increasing difficulty, the most challenging being identified with
an asterisk. Be sure to work at the problems; it is the only way to
learn mathematics. It is also the activity most likely to help you
later in life.

ADVICE TO TEACHERS

This text can be used in a variety of ways. The book contains
sufficient material for a full-year (two-semester) course. It is also
easy to make selections for the typical semester course offered
at many colleges. Both of us have used a preliminary version of
the book in one-semester courses. Professor Varberg's course,
which emphasized problem solving, was based on Chapters 1,
2,.3,4,7, 8, and 12. Professor Roberts’'s course was more philo-
sophical, with special attention given to clear thinking and
precise writing. He used most of Chapters 1, 2, 9, 10, 11, 12, 13,
and 14. There are many other possibilities. The Dependence
Chart will help you design a course to your liking.

Experience suggests that students profit from an early review
of the appendixes, especially A and B. These appendixes are
designed to refresh students’ memories about things learned
long ago but possibly forgotten. An appropriate time to consider
them is right after Chapter 1.

Xiii
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Part 1
olving

There was a time when almost
everyone associated elementary
mathematics with long lists of
problems to be solved: theoretical
problems and practical problems,
problems requiring long computa-
tions and problems beautiful in
their simplicity, many monoto-
nously simple drill problems and a
few utterly baffling problems. To
some, mathematics seemed nothing
more than a collection of memo-
rized tricks which could, with luck,
be matched to the problems they
were designed to solve.

In an effort to get away from
this view, the so-called new math
was developed to emphasize the
structure and unity of mathe-
matics. The intention was laud-
able, and in certain ways successful,

but when pushed too far, this ap-
proach too became pedantic. One
feels the need to learn abstract
principles only when one has
worked on concrete problems.
Skeletons are wonderfully useful,
but it is easier to sell pictures of
those that are covered with meat.
Problems are the meat of mathe-
matics and the focus of this book.
Every subject has its problems.
In contrast, however, to many use-
ful areas of human inquiry (medi-
cine, psychology, economics, etc.)
where a clear and enduring answer
is seldom expected, mathematical
problems admit the possibility of
uncontestably correct answers.
They therefore afford us an excel-
lent medium in which we can focus
attention not on the answers but
on how they are obtained. In
Part I, we undertake such a study,
suggesting that there are prin-
ciples applicable to solving a host
of common problems.

Problems

It is not essential to our pur-
poses to consider only practical
problems. What is essential is that
our problems illustrate the prin-
ciples we have in mind, that they
be interesting, that they pose a
challenge —yet seem enough within
grasp to be tantalizing —and that
they draw out from our imagina-
tion creative ideas about which we
are pleased to say, “I thought of
that.”




George Polya (1887- )

eorge Polya was born in Hungary and educated at the uni-

versities of Budapest, Vienna, Géttingen, and Paris. After

teaching for 26 years at the Swiss Federal Institute of Tech-
nology in Zirich, he became affiliated with Stanford University
where he has continued his research in advanced mathematics,
research that has resulted in over 200 papers and several books.

Polya's research in pure mathematics has earned him a place

of honor among the world’s leading contemporary mathematicians.
But he is also famous for the research and writing he has done
on the nature of problem solving. His books, How to Solve It,
2nd ed. (Garden City, N.Y.: Doubleday, 1959), Mathematics and
Plausible Reasoning (2 vols.) (Princeton, N.J.: Princeton Univer-
sity Press, 1954), and Mathematical Discovery (2 vols.) (New
York: Wiley, 1962) are widely read expositions of the art of
solving problems. We are pleased to acknowledge that the ideas
we express in Part | have been profoundly influenced by reading
Polya's books.
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