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PREFACE

College Calculus with Analytic Geometry is designed to meet the needs of a
majority of students taking a three-semester course in calculus at a college or
university. The text leans heavily on the intuitive approach, gives many illustrat-
ive examples, emphasizes applications wherever suitable, and has a large selec-
tion of graded exercises. The changes in this third edition reflect the many

suggestions we have received from teachers and students who have used the
previous editions. ) ‘

In Chapter 1 we' discuss inequalities, with emphasis on the use of the
absolute-value symbol. Set notation, an important concept for students, is intro-
duced in Chapter 2; we use it in the text in only those cases in which ambiguity
could result from the employment of classical notation. However, when set
notation is cumbersome and does not contribute to the understanding of the
. subject matter, we continue to use standard notation.

Chapter 4 contains an intuitive development of limits, a geometric interpreta-
tion of derivative, and a discussion of continuity and limits of sequences. This
material prepares the student for the thorough treatment of the differentiation of
algebraic functions and the Chain Rule in Chapter 5, as well as for the applications
to problems of maxima and minima, related rates, and approximation in Chap-
ter 6. The section on differential notation in Chapter 6 has been rewritten and
simplified. ’ y

Chapter 7 begins with a careful treatment of area (Jordan content), an ap-
proach which is advantageous in the development of the definition of the integral.
We establish various basic properties of the integral, such as the Theorem of the
Mean and two forms of the Fundamental Theorem of Calculus. There are also
applications to problems of fluid pressure and work, but these may be omitted
without loss of continuity in the presentation. '

In Chapter 8 we resume the work on analytic geometry which we began in
Chapter 3, now using the tools -of calculus in conjunction with the geometric
theory. In order to achieve flexibility in the use of the text, we have placed the
more-detailed topics of analytic geometry in a special appendix. Since many
entering students are well prepared in analytic-geometry, the instructor may wish
to cover the topics in Chapters 3 and 8 very quickly, treating them as a review. On
the other hand, he or she could choose to make a thorough presentation of the
subject by assigning both Chapters 3 and 8 as well as the appendix on analytic
geometry. The total amount of material on conics and related subjects is at least as
great in this book as that found in most texts devoted to analytic geometry alone.
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We next define the natural logarithm by means of the integral, with the
exponential function defined as its inverse. This topic, as well as the differentia-
tion and integration of trigonometric functions and inverse trigonometric
functions, is treated in Chapter 9. We have also provided an appendix with a brief
review of trigonometry for those students who, in the interim since their study of
trigonometry, may have forgotten the definitions of the elenientary trigonometric
functions, as well as the formulas and identities most frequently used in calculus.

In this edition we provide in Chapter 13 a unified development of vectors in
two and three dimensions. In order to do this, we have placed the topics on
three-dimensional analytic geometry (except for quadrics) in Chapter 12, so that
the student can master the concepts of geometric objects in space before he
studies vectors in three dimensions. The study of quadric surfaces, a rather

- special topic and one not required for vector theory, has been transferred to an
appendix.

Chapters 14 and 15 discuss techniques in integration and their applications.

The study of infinite series, the subject of Chapter 16, completes the course in
the calculus of functions of one variable. Chapters 17 and 18 are devoted to the
initial topics in the caiculus of functions of several variables. Partial differentia-
tion, line integrals, and applications are taken up in Chapter 17. In this edition we
mention only briefly the various symbols tor partial differentiation and use more-
uniform notation than we did in our previous editions. A definition of volume
(Jordan content), analogous to that given for area in Chapter 7, is discussed in
Chapter 18. We also cover the elements of multiple integration, with applications
to area, volume, and mass.

Besides those alrcady mentioned, three other useful appendixes are provided.
The one on hyperbolic functions can be used by those students in engineering and
technology who are most likely to need such functions for later courses. There is
an appendix on the axioms of algebra which should provide interesting and useful
additional reading for serious students interested in continuing in mathematics. We
have also provided a table of indefinite integrals and a brief description on how it is
to be used.

An important feature of this edition is the addition of a large number of
challenging exercises which have been inserted at the end of almost every section.
These exercises, together with the routine exercises and those retained from the
second edition, should give the instructor the flexibility he or she needs to assign
large numbers of exercises of moderate difficulty for the average student, as well
as a substantial number of challenging exercises for the more capable student.

Because of the widespread use of the metric system in science and technology
and the gracual conversion to this system in industry and commerce, we have
employed metric units consistently in those problems and applications which
involve measurement.

Berkeley, California M. H. P.
January 1977 C.B. M., Jr.
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INEQUALITIES

1. INEQUALITIES*

Almost all high school students learn plane geometry as a single logical develop-
ment in which theorems are proved on the basis of a system of axioms or
postulates. Unlike plane geometry, however, algebra has traditionally been taught
in high school without the aid of a formal logical systemr., In this method the
student simply learns a few rules—or many—for manipulating algebraic quantities;
these rules lead to success in solving problems but do not ched any light on the
structure of algetra.

The usual rules of algebra are logical consequences of the system of axioms
known as the Axioms of Algebra. To prove the rules we use for manipulating
algebraic expressions directly from the Axioms, as in Euclidean geometry, would
be cumbersome and unwieldy. Therefore we shall assume that the reader is
familiar with the usual laws of algebra and begin with a discussion of inequalities.
The Axioms of Algebra are given in Appendix 4 at the end of the book, and we
recommend their study to students unfamiliar with them.

In elementary algebra and geometry we study equalities almost exclusively.
The solution of linear and quadratic algebraic equations, the congruence of
geometric figures, and relationships among various trigonometric functions are
topics concerned with equality. As we progress in the development of mathemati-
cal ideas—especially in that branch of mathematics of which calculus is a part—we
shall see that the study of inequalities is both interesting and useful. An inequality
is involved when we are more concerned with the approximate size of a quantity
than we are with its true value. Since the proofs of some of the most important
theorems in calculus depend on certain approximations, it is essential that we
develdp a facility for working with inequalities.

We shall be concerned with inequalities among real numbers, and we begin
by recalling some familiar relationships. Given that a and b are any two real
numbers, the symbol

a<hb

.

This chapter and Chapter 2 consist of review material for many students of calculus. Students who do
ot have a thorough working knowledge of inequalities should begin here. Readers familiar with
equalities may start with Chapter 2.
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means that a is less than b.* We may also write the same inequality in the opposite
direction,

b > a,

which is read b is greater than a.

The rules for handling inequalities can be proved on the basis of the Axioms
for Algebra. The rules themselves are only slightly more complicated than the
ones we learned in algebra for equalities. However, the differences arc so
important that we state them as four Theorems about Inequalities and they should
be studied carefully.

Theorem 1. Ifa <band b < c, then a < c. In words: if a is less than b and b is
less than c, then a is less than c.

Theorem 2. If c is any number and a < b, then it is also true thara + ¢ < b + ¢
and a — ¢ < b — c. In words: if the same number is added to or subtracted from
each side of an inequality, the result is an inequality in the same direction.

Theorem 3. Ifa <bandc <dthena+c<b+d. That is, inequalities in the
same direction may be added.

&

It is important to note that in general inequalities may not be subtracted. For
example, 2 < 5 and 1 < 7. We can say, by addition, that 3 < 12, but note that
subtractiorn would state the absurdity that 1 is less than ~2.

Theorem 4. If a < b and c is any positive number, then
ac < bc,

while if ¢ is a negative number, then »
ac > bc.

Ir words: multiplication of both sides of an inequality by the same positive number
preserves the direction, while multiplication by a negative number reverses the
direction of the inequality.

Since dividing an inequality by a nuraber d is the same as multiplying it by
1/d, we see that Theorem 4 applies for division as well as for multiplication.

From the geometric point of view we associate a horizontal axis with the
totality of real numbers. The origin may be selected at any convenient point, with
positive numbers to the right and negative numbers to the left (Fig. 1-1). For
every real number there will be a corresponding point on the line and, conversely,
every point will represent a real number. Then the inequality a < b may be read:
a is to the left of b. This geometric way of looking at inequalities is frequently of

f——t—F—F—1— Figure 1-1
-3-2-10 1 2 3

* Which is true if and only if b — a is positive (see Appendix 4, §2).
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— Figure 1-2 —
a a

Figure 1-3

o

3
b

help in solving problems. It is also helpful to introduce the notion of an interval of
numbers or points. If a and b are numbers {as shown in Fig. 1-2), then the open
interval from a to b is the collection of all numbers which are both larger than a
and smaller than b. That is, an open interval consists of all nuinbers between a and
b. A numter x is between a and b if both inequalities a < x and x < b are true.
A compact way of writing this is

a<x< b.

The closed interval from a to b consists of all the points between a and b,
including a and b (Fig. 1-3). Suppose a number x is either equal to a or larger
than g, but we don’t know which. We write this conveniently as x = a, which is
read: x is greater than or equal to a. Similarly, x < b is read: x is less than or equal
to b, and means that x may be either smaller than b or may be b itself. A compact
way of designating a closed interval from a to b is to state that it consists of all
points x such that
asx=<bh

An interval which contains the endpoint b but not a is said to be half-open on the
left. That is, it consists of all points x such that

a<x<h.

Similarly, an interval containing a but not b is called half-open on the right, and
we write
a=<x<b

Parentheses and brackets are used as symbols for intervals in the followiag way:

(a, b) for the open interval: a < x < b,

[a, b] for the closed interval: a < x < b,

(a, b] for the interval half-open on the left: a < x < b,
[a, b) for the interval half-open on the right: a = x'< b.

We can extend the idea of an interval of points to cover some unusual cases.
Suppose we wish to consider all numbers larger than 7. This may be thought of as
an interval extending to infinity on the right. (See Fig. 1-4.) Of course, infinity is
not a number, but we use the symbol (7, ») to represent all numbers larger than 7.
We could also write: all numbers x such that

7T <x <o,

In a similar way, the symbol (—, 12) will stand for all numbers less than 12. The
double inequality

—o < x < 12

is an equivalent way of representing all numbers x less than 12.

t &~ Figure 14
0 7

‘
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The first-degree equation 3x + 7 = 19 has a unique solution, x = 4. The
quadratic equation x> — x — 2 = 0 has two solutions, x = —1 and x = 2. The
trigonometric equation sin x = 3 has an infinite numbeTr of solutions: x = 30°,
150°, 390°, 510°,.... The solution of ar inequality involving a single unknown,
say x, is the collection of all numbers which make the inequality a true statement.
Sometimes this is called the solution set. For example, the inequality

3x —7<8

has as its solution all numbers less than 5. To demonstrate this we argue in the
following way. If x is a number which satisfies the above inequality we can, by
Theorem 2, add 7 to both sides of the inequality and obtain a true statement.
That is, we have

3x—-7+7<8+7 or  3x <15
Now, dividing both sides by 3 (Theorem '4); we ‘obtain
x <5
and observe that if x is a solution, then it is less than 5. Strictly speaking,
however, we have not proved that every number which is less than 5 is a solution.

In an actual proof we would begin by supposing that x is any number less than §;
that is,

x < 5.
We multiply both sides by 3 (Theorem 4) and then subtract 7 (Theorem 2) to get
3x — 7 <8,

the original inequality. Since the condition that x is less than 5 implies the original
inequality, we have proved the result. The important thing to notice is that «}he
proof consisted of reversing the steps of the original argument which led tg- the
solution x < 5 in the first place. So long as each of the steps we take is rel}eisible,
the above procedure is completely satisfactory so far as obtaining soldtions “is
concerned. The step going from 3x — 7 < 8 to 3x < 15 is reversible, since these
two inequalities are equivalent. Similarly, the inequalities 3x < 15 and x < S are
equivalent. Finally, note that the solution set consists of all numbers in the
interval (—o, 5).

Methods for the solution of various types of simple algebraic inequalities are
shown in the following examples, which should be studied carefully.

Example 1. Solve for x:

-7 — 3x < 5x + 29.

Solution. Subtract 5x from both sides, getting
=7 — 8x < 29.
Multiply both sides by —1, reversing the direction of the inequality, to obtain
‘ 7 + 8x > 29, , ,
Subtracting 7 from both sides yields 8x > —36, and dividing by 8 gives the
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solution

el

> =

or, stated in interval form: all x in the interval (=3, ). <

To verify the correctness of the result, it is necessary to perform the above
steps in reverse order. However, the observation that each individual step is
reversible is sufficient to check the validity of the answer.

Example 2. Solve for x (x # 0):
< 5.

= | W

Solution. We have an immediate incliaation to multiply both sides by x. How-
ever, since we don’t know in advance whether x is positive or negative, we must
proceed cautiously. We do this by considering two cases: (1) x is positive, and (2)
x is negative.

case 1. Suppose x > 0. Then muitiplying by x preserves the direction of the
inequality (Theorem 4), and we get
3 < 5x.

Dividing by 5, we find that x > 2. This means that we must find all numbers which
satisfy both of the inequalities

x>0 and x >3
Clearly, any number greater than 2 is also positive, and the solution in Case 1
consists of all x in the interval (2, «).
CSE . x < 0. Multiplying by x reverses the direction of the inequality. We have
3 > 5x,
and herefore § > x. We seek all numbers x, such that both of the inequalities

x<0 and x <32

kold. The solution in Case 2 is the collection of all x in the interval (—, 0). A
way of combining the answers in the two cases is to state that the solution set
consists of all numbers x not in the closed interval [0, 3]. (See Fig. 1-5.) <

A
4

Figure 1-5

suw

Example 3. Solve for x (x # —2):

2x -3 1

— <.

x+2 3
‘Solution. As in Example 2, we must consider two cases, according to whether
x + 2 is positive or negative.



INEQUALITIES

case 1. x + 2 > 0. We multiply by 3(x + 2), which is positive, getting
6x —9<x+2.
Adding 9 — x to both sides, we have
5x < 131, from which x < &

Since we have already assumed that x + 2 > 0, and since we must have x < .
we see that x must be larger than —2 and smaller than 41 That is, the solution set
consists of all x in the interval (=2, ).

CASE 2. x + 2 < 0. Again multiplying by 3(x + 2) and reversing the inequality,
we obtain
6x —9>x +2,

or 5x > 11 and x > 4. In this case, x must be less than —2 and greater than 15—‘,
which is impossible. Combining the cases, we get as the solution set all numbers in
(-2, ). See Fig. 1-6.

= Figure 1-6 <

PROBLEMS

In Problems 1 through 14, solve for x.

1. 2x -3<7 3 2x+4<x-5

3. 5-3x< 14 4.2—5x§3+4x

5. 23x —6) <4 — (2 + 5x) 6';"x.—4<2—3’5,+2—53x
4 3 - .

T, —2 = 8. X 1,4
x 5
x+3 2 4

9. <5 10 =-3<-+1
x=2 x x

+ -

11, 223 .9 i, 2222
X =4 - x+1 2

13, —X—<2 oy -2 5+1
3—-x x+3 x

In Problems 15 through 23, find the values of x, if any, for which both inequalities hold.

15. 2x - 7<5-x and 3-4x<3

16. 3x — 8 < 5(2 — x) and 2Bx +4)—-4x+7<5+x
2x+6

17. "3 ~§<5 and  15-3x<4+2x

18. 3 —6x < 2(x + 5) and 7(2 — x) <3x + 8

* Starred problems are hose that are unusually difficult.



1-2 ABSOLUTE VALUE

2 3

*
19.x_1<4 and x—2<7
o, 2o2sg g A—Eas
x+1 x=2
*21.§<5 and x+2<7-3x
X 8
2
*22 =<1 and (x=2)(x+3)<0
X ¥
3 & »
*23, ;g<2 .and  (x-Dx+4)<0

24; Show that ‘fheorem 3 for inequalities may be derived from Theorems 1 and 2.

25. Given that a, b, ¢, and d are all posiﬁve..{numbers, and that a < b and ¢ < d;
show that ac < bd. i

*26. a) State the most general cu'cumstances in whlch the hypotheses ¢ < b and ¢ < d
imply that ac < bd.
b) Given that a < b and ¢ < d, when is it true that ac > bd?

27. If x is a positive number, prove that
x + L = 2.
x

28. a) If x and y are positive numbers, show that

(l+—l-)(x +y)=4.
x oy

b) If x, y, and z are positive numbers, show that

(l 1 )
+—+—-)Jx+y+2z)=09,
x y

c) If x, y, z, and w are positive numbers, show that

(—l—+l+-l-+ )(x+y+z+w)>l6
x y z w

*d) Generalize the above results to n numbers x,, x,,..., X,

*29. If x and y are any numbers different from zero, show that
2 6 2
x—z‘ + l—% +24 = 8x + 2
x y x
*30. Let x and y be positive numbers with x = y. Show that

X,
y

Show that the inequality is reversed if y = x.

=

+ 3.

® <

)2
y
X2

2. ABSOLUTE VALUE

If a is any positive number, the absolute value of a is defined to be a itself. If a is
negative, the absolute value of a is defined to be —a. The absolute value of zero is



