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Preface: Controlled and Living Polymerizations

The discovery of living anionic polymerization and subsequently other
controlled/living polymerizations has had tremendous impact on polymer
and materials science. It facilitated major developments not only in
synthetic polymer chemistry but also in polymer physics as it opened
an avenue to the preparation of well-defined polymers with precisely
designed molecular architectures and nanostructured morphologies. As an
example, block copolymers synthesized via sequential monomer addition
by Szwarc etal. more than 50 years ago [1] have inspired a generation
of polymer physicists due to their potential to self-organize in bulk or
solution. They were successfully commercialized as thermoplastic elastomers,
compatibilizers, surfactants, or components of medical and personal care
products, to name just a few applications. Thermoplastic elastomers, first
commercialized under the trade name Kraton®, are landmark materials made
by living anionic polymerization and they are applied in many compounding
applications, including footwear, pressure-sensitive adhesives, cables, soft-
touch overmolding, cushions, lubricants, gels, coatings, or in flexographic
printing and road marking. It is anticipated that materials made by other
controlled/living processes will lead to more applications with even larger
market impact. Many details on the current and potential future applications
of polymers made by controlled/living polymerization can be found in all
chapters of this book.

The term living polymer was coined by Michael Szwarc to describe the
products of the anionic polymerization of styrene initiated by electron transfer
in tetrahydrofuran [1, 2]. In this context, “living”” denotes the ability of a polymer
chain to further add monomer after the initial batch of monomer has been
consumed, and this means that the polymer chains do not undergo irreversible
chain breaking reactions, such as termination or chain transfer. The IUPAC
Gold Book [3] defines “living polymerization” as a chain polymerization from
which chain transfer and chain termination are absent. It adds (although this is
not part of the definition) the following: In many cases, the rate of chain initiation
is fast compared with the rate of chain propagation, so that the number of kinetic-
chain carriers is essentially constant throughout the polymerization. Typically, such
a process should lead to a very narrow (Poisson) molecular weight distribution
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Preface: Controlled and Living Polymerizations

(MWD). However, a slow initiation process can have a considerable impact on
the molecular weights achieved and on the MWD.

Ithas been discussed how strict one should regard the absence of termination
and transfer. For example, it is impossible to completely suppress termination
in radical polymerization. Thus, Szwarc later modified his definition [4] saying
that a polymerization is living when the resulting polymer retains its integrity for a
sufficiently long time to allow the operator to complete its task, whether a synthesis
or any desired observation or measurement. Even in that time some decomposition
or isomerization may occur, provided it is virtually undetectable and does not affect
the results.

The term controlled polymerization introduced by us in 1987 [S] can be
defined as a synthetic method to prepare polymers, which are well-defined
with respect to topology (e.g., linear, star-shaped, comb-shaped, dendritic, and
cyclic), terminal functionality, composition, and arrangement of comonomers
(e.g., statistical, periodic, block, graft, and gradient), and which have molecular
weights predetermined by the ratio of concentrations of reacted monomer to
introduced initiator, as well as a designed (not necessarily narrow) MWD.

Thus, a living polymerization is not always controlled and a controlled
polymerization is not always strictly living, according to the definitions
given above. In the ideal case, a living polymerization is also controlled;
however, in some systems such as in a radical polymerization, termination can
never be entirely avoided but its contribution can be sometimes significantly
reduced.

The feature of livingness was discovered in carbanionic polymerization
in 1956. Many efforts were made in other polymerization methodologies to
achieve a level of control attainable in living carbanionic polymerization. How-
ever, it took nearly 20 years until living cationic ring-opening polymerization
was developed (living anionic ring-opening polymerization was known already
for some time). Group transfer polymerization (GTP; a process close to anionic
polymerization) was reported in 1983 and the living carbocationic polymer-
ization in 1984. Subsequently, living ring-opening metathesis polymerization
(ROMP) was reported in 1986 and various controlled/living radical polymer-
ization mechanisms were reported in the 1990s. Finally, even coordination
polymerization of olefins was made living.

It is intriguing that almost all new controlled/living systems have one
common feature, which is the coexistence of active and inactive (“dormant”)
species, being in a dynamic equilibrium, either via reversible deactivation
processes or via reversible (degenerative) transfer.

Reversible deactivation is a process where active species (ions, ion pairs, or
radicals), P*, are in a dynamic equilibrium with inactive (dormant), typically
covalent species, P,

kact
~rmn P (+C) ==~~~ PH(+D)

kdead



Preface: Controlled and Living Polymerizations

Here, Cis a catalyst (coinitiator/activator) and D is a deactivator or product of
the activation process. As an example, in atom transfer radical polymerization
(ATRP), P can be a bromine-terminated chain end, C can be a Cu(I) compound,
P* is the propagating radical, and D is a Cu(II) compound (Chapter 3). In GTP,
P s a silylketene acetal, C can be a bifluoride anion, P* can be an enolate, and
D is a silyl fluoride (Chapter 1).

Reversible transfer is a bimolecular reaction between a dormant and an
active polymer chain, which only differ in their degree of polymerization
(degenerative transfer, i.e., equilibrium constant K., = 1), leading to a direct
exchange of activity between two chain ends:

kCX
~rors P o p;“n T~~~ p: + ~~~~ P

kex

A typical example is the exchange reaction between an iodine-terminated chain
end and a propagating radical. Reversible addition—fragmentation chain trans-
fer (RAFT) polymerization is also closely related to such a process (Chapter 3).

As a consequence of these processes, the MWD may be considerably
broader than the Poisson distribution, where the polydispersity index, PDI
= My/My,, is close to unity. The PDI depends on the ratio of the rate constants
of propagation to deactivation (or exchange) and decreases with monomer
conversion [6]. If deactivation/exchange is slow relative to propagation, broad
MWDs are observed. Many such systems have been called nonliving, because
broad MWDs were assumed to originate in chain breaking reactions.

The first four chapters in this book present the mechanisms and the most
recent advances in controlled/living polymerization of vinyl monomers. The
first chapter summarizes anionic polymerization using classic systems and
also recent developments employing equilibria between active and dormant
species that enabled reduction of the rate of polymerization of styrene and
also controlled polymerization of (meth)acrylates. The second chapter is
devoted to carbocationic polymerization and illustrates examples of equilibria
between carbocations and various dormant species and their applications to
synthesis of well-defined (co)polymers. The third chapter describes a state
of the art in controlled radical polymerizations, predominantly in stable free
radical polymerization, atom transfer radical polymerization, and degenerative
systems such as RAFT, and also presents how controlled molecular architecture
can lead to new applications. The fourth chapter is focused on controlled/living
coordination polymerization of olefins and presents some new materials
prepared by this technique.

The next two chapters are focused on ring-opening polymerization. Chapter 5
presents recent advances in both anionic and cationic polymerization of
heterocyclics together with examples of well-defined (co)polymers and their
applications. Chapter 6 is focused on ROMP of cycloolefins and a variety of
resulting new materials prepared by ROMP.
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Preface: Controlled and Living Polymerizations

Chapters 7 and 8 illustrate how various controlled/living polymerizations
can be employed to precisely control various elements of macromolecular
architecture, such as chain composition and microstructure, chain topology
and functionality, including block and graft copolymers. Chapter 9 presents
how segmented copolymers self-organize in bulk, thin films, and solution
into various nanostructured morphologies and how precise synthesis and
processing can generate new materials with exciting properties.

Finally, the last chapter provides not only a state-of-the-art summary
of current and forthcoming applications of Kraton, a large-volume block
copolymer prepared by anionic vinyl polymerization, but also (co)polymers
prepared by other controlled/living techniques.

We are confident that this book provides an excellent overview of various
controlled/living polymerization techniques and hope that it will stimulate
new discoveries and will facilitate developments of new polymeric materials
for many exciting applications.
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