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Preface

“Elasticity is one of the crowning achievements of Western culture!” exclaimed
my usually reserved colleague Professor George Zahalak during a meeting to
discuss the graduate program in Solid Mechanics. Although my thoughts on
the theory of elasticity had not been expressed in such noble terms, it was the
same admiration for the creative efforts of the premier physicists, mathe-
maticians and mechanicians of the 19th and 20th century that led me to
attempt to popularize the basis of solid mechanics in this introductory form.

The book is intended to provide a thorough grounding in tensor-based
theory of elasticity, which is rigorous in treatment but limited in scope. It is
directed to advanced undergraduate and graduate students in civil, mechanical
or aeronautical engineering who may ultimately pursue more applied studies.
It is also hoped that a few may be inspired to delve deeper into the vast liter-
ature on the subject. A one-term course based on this material may replace
traditional Advanced Strength of Materials in the curriculum, since many
of the fundamental topics grouped under that title are treated here, while
those computational techniques that have become obsolete due to the avail-
ability of superior, computer-based numerical methods are omitted.

Little, if any, originality is claimed for this work other than the selection,
organization and presentation of the material. The principal historical
contributors are noted in the text and several modern references are liberally
cited.

My personal interest in the theory of elasticity was kindled at Northwestern
University through a course offered by Professor George Herrmann, now
of Stanford University. I am also indebted to my colleague Professor S.
Sridharan who has class-tested the text, pointed out errors and omissions,
and contributed some challenging exercises, as well as to Mr. Moujalli
Hourani for carefully reading the manuscript. I am grateful to Ms. Kathryn
Schallert for typing the manuscript.

Phillip L. Gould
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CHAPTER 1

Introduction and Mathematical Preliminaries

1.1 Scope

The theory of elasticity comprises a consistent set of equations which uniquely
describe the state of stress, strain and displacement at each point within an
elastic deformable body. Solutions of these equations fall into the realm of
applied mathematics, while applications of such solutions are of engineering
interest. When elasticity is selected as the basis for an engineering solution, a
rigor is accepted that distinguishes this approach from the alternatives, which
are mainly the based on the strength of materials with its various specialized
derivatives such as the theories of rods, beams, plates and shells. The distin-
guishing feature between the various alternative approaches and the theory
of elasticity is the pointwise description embodied in elasticity, without resort
to expedients such as Navier’s hypothesis of plane sections remaining plane.

The theory of elasticity contains equilibrium equations relating the stresses;
kinematic equations relating the strains and displacements; constitutive equa-
tions relating the stresses and strains; boundary conditions relating to the
physical domain; and uniqueness constraints relating to the applicability of
the solution. Origination of the theory of elasticity is attributed to Louis—
Marie—Henri Navier, Simon—Denis Poisson and George Green in the first
half of the 19th century [1.1].

In subsequent chapters, each component of the theory will be developed
in full from the fundamental principles of physics and mathematics. Some
limited applications will then be presented to illustrate the potency of the
theory as well as its limitations.

1.2 Vector Algebra

A vector is a directed line segment in the physical sense. Referred to the unit
basis vectors (e,,e,,e;) in the Cartesian coordinate system (x, y, z), an arbi-
trary vector A may be written in component form as

A=Ae, +Ae, + A.e,. (1-1)

1
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X3

Fig. 1-1 Cartesian coordinate systems (after Tauchert, Energy Principles in Structural Mechanics,
McGraw-Hill, 1974). Reproduced by permission.

Alternately, the Cartesian system could be numerically designated as
(x,,x,,Xx3), whereupon

A=A1e1 +A262+A393. (1'2)

The latter form is common in elasticity. An example is vector r in Fig. 1-1,
where the unit vectors e, e,, and e, are identified.

Beyond the physical representation, it is often sufficient to deal with the
components alone as ordered triples,

A= (AI,AZ’A3)' (1'3)
The length or magnitude of A is given by
|A| = A} + A2 + 43. (1-4)

Vector equality, addition and subtraction are trivial. Vector multiplication
has two forms. The inner, dot, or scalar product is

C=A-B
= AIBl + Asz + A3Bs (1'5)
— IAI IBICOS GAB'
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Additionally, there is the outer, cross or vector product
C=AxB
(1-6)
= (4,B; — A;3By)e; + (438, — A, By)e;, + (4, B, — A,B)es,

which is conveniently evaluated as a determinant

€, € €
C=AxB=|4, A, A,|;
B, B, B

C is perpendicular to the plane containing A and B.

1.3 Scalar and Vector Fields

1.3.1 Definitions: A scalar quantity expressed as a function of the Cartesian
coordinates such as

f(xy,x,,x3) = constant 1-7

is known as a scalar field. An example is the temperature at a point.

A vector quantity similarly expressed, such as A(x,,x,,x;), is called a
vector field. An example is the velocity of a particle. We are concerned with
changes or derivatives of these fields.

1.3.2 Gradient: The gradient of a scalar field f'is defined as

gradf= Vf
Ve s S T )
= ax,el + 6x2e2 + 6x3e3 (1-8)
_( o o
0x,’ 0x, 0x; )’

grad fiis a vector point function which is orthogonal to the surface f = constant,
everywhere. Conversely, the components of grad f may be found by the appro-
priate dot product, for example,

L (1-9)

0x,

The del operator V may be treated as a vector

b
0x5

which is mathematically convenient.
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1.3.3 Divergence: The divergence of a vector field A is defined as
divA=V-A

_od, o4y | o4y

T 0x,  0x, Ox3 (-11)

which is a scalar.

1.3.4 Curl: Since two forms of vector multiplication exist, it is natural to
expect another derivative form of A. The cur/ of A is defined as

curlA=V X A

€ € €3

_le0 20 20 _
T lox, Ox, 0xs (-12
A, A, A,

in determinant form.

1.4 Indicial Notation

One of the conveniences of modern treatments of the theory of elasticity is
the use of shorthand notation to facilitate the mathematical manipulation of
lengthy equations.

Referring to the ordered triple representation for A in Eq. (1-3), the three
Cartesian components can be symbolized as 4;, where the subscript or index
i is understood to take the sequential values 1, 2, 3. If we have nine quantities
we may employ a double subscripted notation D;;, where i and j range from
1 to 3 in turn. Later, we will associate these nine components with a higher
form of a vector, called a tensor. Further, we may have 27 quantities, C;;,, etc.

While i and j range as stated, an exception is made when two subscripts
are identical, such as Dj;. The Einstein summation convention states that a
subscript appearing twice is summed from 1 to 3. No subscript can appear more
than twice. As an example, we have the inner product, Eq. (1-5), rewritten as

3
A;B; = Z A;B;
@ (1-13)
=A,B, + A,B, + A3B;.
Also,
Djj =Dy + Dy; + Dss. (b) (1-13)

It is apparent from the preceding examples that there are two distinct types
of indices. The first type appears only once in each term of the equation and
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ranges from 1 to 3. It is called a free index. The second type appears twice
in a single term and is summed from 1 to 3. Since it is immaterial which letter
is used in this context, a repeated subscript is called a dummy index. That is,
D; = D;; = Dy

From the preceding discussion, it may be deduced that the number of
individual terms represented by a single product is 3%, where k is the number
of free indices.

There are some situations in which double subscripts occur where the
summation convention is not intended. This is indicated by the symbol ¥. For
example, the individual components D,,, D,, and D5 could be represented
by D, 33,--

The product of the three components of a vector is expressed by the Pi
convention:

s .
l_'[l A;=A,A,4,. (1-14)
Partial differentiation may also be abbreviated using the comma convention
04;
i— 4. .. -
=4 (1-15)

j
Since both i and j are free indices, Eq. (1-15) represents 32 = 9 quantities.
With repeated indices,

% . (1-16)
=divA )
as defined in Eq. (1-11).
Further,
aDU _
. Dy ;
(1-17)

=D;,1 + Dy + Dy 5,

which takes on 3! = 3 values for each i = 1, 2, 3. This example combines the
summation and comma conventions.

1.5 Coordinate Rotation

In Fig. 1-1 (see [1.2]), we show a position vector to point P, r, resolved into
components with respect to two Cartesian systems, x; and x;, having a common
origin. The unit vectors in the x; system are shown as €] on the figure.

First, we consider the point P with coordinates P(x;, x,,x3) = P(x;) in the
unprimed system and P(x}, x5, x3) = P(x}) in the primed system. The linear
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transformation between the coordinates of P is given by
Xy =0ty Xy + 05X + 03X
Xy = 051Xy + 05X, + 0p3X3 (@) (1-18)
X3 = 03Xy + 03,X; + 033X3
or
X; = 04;X; (b) (1-18)

using the summation convention. Each of the nine quantities a;; is the cosine
of the angle between the ith primed and the jth unprimed axis, that is,

’

%,
o; = cos (x], x;) = 53 = ¢/-¢; = cos (€, ;) (1-19)

The o;’s are known as direction cosines and are conveniently arranged in
tabular form for computation:

| Xy X2 X3
x| Oy 5% ®y3 1-20
X %21 o) %23 (1-20)
Xy ®31 U332 ®33-

It is emphasized that, in general, «;; # ;. From a computational standpoint,
Eq. (1-19) indicates that expressing the unit vectors in the x; coordinate
system, e;, in terms of those in the x; system, e;, is tantamount to evaluating
the corresponding a;; terms. A numerical example is given in Sections 2.4.3
and 2.5.

We next consider the position vector r and recognize that the components
are related by Eq. (1-18). Conversely, any quantity which obeys this trans-
formation law is a vector. This somewhat indirect definition of a vector proves
to be convenient for defining higher-order quantities, Cartesian tensors.

From a computational standpoint, it is often convenient to carry out the
transformations indicated in Eq. (1-18) in matrix form as

'} = [R]{x}, (1-21)
in which
X} = {xi x3 x3} @)
{x} = {x; x; x5} (b) (1-22)
Oy Oyp O3
[R]=]oz 03 03, (0

O3 O3 33

[R] is called a rotation matrix.



1.7 Algebra of Cartesian Tensors 7
1.6 Cartesian Tensors

A tensor of order 7 is a set of 3" quantities which transform from one coordi-
nate system, x;, to another, x{, by a specified law, as follows:

n order transformation law

0 zero (scalar) A; = A;

1 one (vector) A; = oy;4;

2 two (dyadic) A= oo Ay

3 three Al = 00 04 Ay

4 four Al = %% 0k p%1g A pmnpg

Order zero and order one tensors are familiar physical quantities, whereas
the higher-order tensors are useful to describe physical quantities with a
corresponding number of associated directions.

Second-order tensors (dyadics) are particularly prevalent in elasticity and
the transformation may be carried out in a matrix format, analogous to Eq.
(1-21), as

[A'] = [RI[A][R]", (1-23)
in which
1 A Al
[AT]= |43 A5 A% (1-24)

Ay As, A
and [A] is similar.

It may be helpful to visualize a tensor of order n as having » unit vectors
or directions associated with each component. Thus, a scalar has no direc-
tional association (isotropic) and a vector is directed in one direction. A
second-order tensor has two associated directions, perhaps one direction in
which it acts and another defining the surface on which it is acting.

1.7 Algebra of Cartesian Tensors

Tensor arithmetic and algebra are similar to matrix operations in regard to
addition, subtraction, equality and scalar multiplication. Multiplication of
two tensors of order n and m produces a new tensor of order n + m, for
example,

A;Bj, = Cyy, (1-25)

For repeated indices the summation convention holds, as shown in Eq.
(1-13b).



