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Preface

This book emerges from a course given at the Department of Mathematics of
the Delft University of Technology. It forms a part of the program on Risk and
Environmental Modelling open to graduate students with the equivalent of a Bache-
lor’s degree in mathematics. The students are familiar with undergraduate analysis,
statistics and probability, but for non-mathematicians this familiarity may be latent.
Therefore, most notions are ‘explained in-line’. Readers with a nodding acquain-
tance with these subjects can follow the thread. To keep this thread visible, proofs
are put in supplements of the chapters in which they occur. Exercises are also
included in most chapters.

The real source of this book is our experience in applying uncertainty analysis.
We have tried to keep the applications orientation in the foreground. Indeed, the
whole motivation for developing generic tools for high dimensional dependence
modelling is that decision makers and problem owners are becoming increasingly
sophisticated in reasoning with uncertainty. They are making demands, which an
analyst with the traditional tools of probabilistic modelling cannot meet. Put simply,
our point of view is this: a joint distribution is specified by specifying a sampling
procedure. We therefore assemble tools and techniques for sampling and analysing
high dimensional distributions with dependence. These same tools and techniques
form the design requirements for a generic uncertainty analysis program. One
such program is UNcertainty analysis with CORrelatioNs (UNICORN). A fairly
ponderous light version may be downloaded from http://ssor.twi.tudelft.nl/ risk/.
UNICORN projects are included in each chapter to give hands on experience in
applying uncertainty analysis.

The people who have contributed substantially to this book are too numerous
to list, but certainly include Valery Kritchallo, Tim Bedford, Daniel Lewandowski,
Belinda Chiera, Du Chao, Bernd Kraan and Jolanta Misiewicz.
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Introduction: Uncertainty
Analysis and Dependence
Modelling

1.1 Wags and Bogsats

‘...whether true or not [it] is at least probable; and he who tells nothing exceeding
the bounds of probability has a right to demand that they should believe him who
cannot contradict him’. Samuel Johnson, author of the first English dictionary,
wrote this in 1735. He is referring to the Jesuit priest Jeronimo Lobo’s account
of the unicorns he saw during his visit to Abyssinia in the 17th century (Shepard
(1930) p. 200).

Johnson could have been the apologist for much of what passed as decision
support in the period after World War II, when think tanks, forecasters and expert
judgment burst upon the scientific stage. Most salient in this genre is the book
The Year 2000 (Kahn and Wiener (1967)) in which the authors published 25 ‘even
money bets’ predicting features of the year 2000, including interplanetary engineer-
ing and conversion of humans to fluid breathers. Essentially, these are statements
without pedigree or warrant, whose credibility rests on shifting the burden of proof.
Their cavalier attitude toward uncertainty in quantitative decision support is rep-
resentative of the period. Readers interested in how many of these even money
bets the authors have won, and in other examples from this period, are referred to
(Cooke (1991), Chapter 1).

Quantitative models pervade all aspects of decision making, from failure prob-
abilities of unlaunched rockets, risks of nuclear reactors and effects of pollutants
on health and the environment to consequences of economic policies. Such quan-
titative models generally require values for parameters that cannot be measured or

Uncertainty Analysis with High Dimensional Dependence Modelling D. Kurowicka and R. Cooke
© 2006 John Wiley & Sons, Ltd



2 INTRODUCTION

assessed with certainty. Engineers and scientists sometimes cover their modesty
with churlish acronyms designating the source of ungrounded assessments. ‘Wags’
(wild-ass guesses) and ‘bogsats’ (bunch of guys sitting around a table) are two
examples found in published documentation.

Decision makers, especially those in the public arena, increasingly recognize
that input to quantitative models is uncertain and demand that this uncertainty be
quantified and propagated through the models.

Initially, it was the modellers themselves who provided assessments of uncer-
tainty and did the propagating. Not surprisingly, this activity was considered sec-
ondary to the main activity of computing ‘nominal values’ or ‘best estimates’ to
be used for forecasting and planning and received cursory attention.

Figure 1.1 shows the result of such an in-house uncertainty analysis performed by
the National Radiological Protection Board (NRPB) and The Kernforschungszentrum
Karlsruhe (KFK) in the late 1980s (Crick et al. (1988); Fischer et al. (1990)). The
models in question predict the dispersion of radioactive material in the atmosphere
following an accident in a nuclear reactor. The figure shows predicted lateral disper-
sion under stable conditions, and also shows wider and narrower plumes, which the
modellers are 90% certain will enclose an actual plume under the stated conditions.

It soon became evident that if things were uncertain, then experts might dis-
agree, and using one expert-modeller’s estimates of uncertainty might not be
sufficient. Structured expert judgment has since become an accepted method for
quantifying models with uncertain input. ‘Structured’ means that the experts are
identifiable, the assessments are traceable and the computations are transparent.
To appreciate the difference between structured and unstructured expert judgment,
Figure 1.2 shows the results of a structured expert judgment quantification of the
same uncertainty pictured in Figure 1.1 (Cooke (1997b)). Evidently, the picture of
uncertainty emerging from these two figures is quite different.

One of the reasons for the difference between these figures is the following:
The lateral spread of a plume as a function of down wind distance x is modelled,
per stability class, as

o(x) = Ax".

T O O O O D
N O O O

ﬁﬂm _ wﬁg:m—,»_,)»)’
[30 k] .

<
+ >

Figure 1.1 5%, 50% and 95% plume widths (stability D) computed by NRPB and
KFK.
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30 kml
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Figure 1.2 5%, 50% and 95% plume widths (stability D) computed by the EU-
USNRC Uncertainty Analysis of accident consequence codes.

Both the constants A and B are uncertain as attested by spreads in published
values of these coefficients. However, these uncertainties cannot be independent.
Obviously if A takes a large value, then B will tend to take smaller values.
Recognizing the implausibility of assigning A and B as independent uncertainty
distributions, and the difficulty of assessing a joint distribution on A and B, the
modellers elected to consider B as a constant; that is, as known with certainty.'

The differences between these two figures reflect a change in perception regard-
ing the goal of quantitative modelling. With the first picture, the main effort has
gone into constructing a quantitative deterministic model to which uncertainty
quantification and propagation are added on. In the second picture, the model
is essentially about capturing uncertainty. Quantitative models are useful insofar as
they help us resolve and reduce uncertainty. Three major differences in the practice
of quantitative decision support follow from this shift of perception.

e First of all, the representation of uncertainty via expert judgment, or some
other method is seen as a scientific activity subject to methodological rules
every bit as rigorous as those governing the use of measurement or experi-
mental data.

e Second, it is recognized that an essential part of uncertainty analysis is the
analysis of dependence. Indeed, if all uncertainties are independent, then
their propagation is mathematically trivial (though perhaps computationally

IThis is certainly not the only reason for the differences between Figures 1.1 and 1.2. There was
also ambivalence with regard to what the uncertainty should capture. Should it capture the plume
uncertainty in a single accidental release, or the uncertainty in the average plume spread in a large
number of accidents? Risk analysts clearly required the former, but meteorologists are more inclined
to think in terms of the latter.



4 INTRODUCTION

challenging). Sampling and propagating independent uncertainties can easily
be trusted to the modellers themselves. However, when uncertainties are
dependent, things become much more subtle, and we enter a domain for
which the modellers’ training has not prepared them.

e Finally, the domains of communication with the problem owner, model eval-
uation, and so on, undergo significant transformations once we recognize that
the main purpose of models is to capture uncertainty.

1.2 Uncertainty analysis and decision support: a
recent example

A recent example serves to illustrate many of the issues that arise in quantifying
uncertainty for decision support. The example concerns transport of Campylobac-
ter infection in chicken processing lines. The intention here is not to understand
Campylobacter infection, but to introduce topics covered in the following chapters.
For details on Campylobacter, see Cooke et al. (Appearing); Van der Fels-Klerx
et al. (2005); Nauta et al. (2004).

Campylobacter contamination of chicken meat may be responsible for up to
40% of Campylobacter-associated gastroenteritis and for a similar proportion of
deaths. A recent effort to rank various control options for Campylobacter contam-
ination has led to the development of a mathematical model of a processing line
for chicken meat (these chickens are termed ‘broilers’).

A typical broiler processing line involves a number of phases as shown in
Figure 1.3. Each phase is characterized by transfers of Campylobacter colony form-
ing units from the chicken surface to the environment, from the environment back
to the surface and from the faeces to the surface (until evisceration), and the
destruction of the colonies. The general model, applicable with variations in each
processing phase, is shown in Figure 1.4.

Given the number of Campylobacter on and in the chickens at the inception
of processing, and given the number initially in the environment, one can run
the model with values for the transfer coefficients and compute the number of
Campylobacter colonies on the skin of a broiler and in the environment at the end
of each phase. Ideally, we would like to have field measurements or experiments

Distribution

c
s || § 2 |[2a
= ® = oc

— =
3 8 L /538
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1] 2 S =0
Q Lﬁ a (O]

Figure 1.3 Broiler chicken processing line.
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Figure 1.4 Transfer coefficients in a typical phase of a broiler chicken processing
line.

to determine values for the coefficients in Figure 1.4. Unfortunately, these are not
feasible. Failing that, we must quantify the uncertainty in the transfer coefficients,
and propagate this uncertainty through the model to obtain uncertainty distributions
on the model output.

This model has been quantified in an expert judgment study involving 12 experts
(Van der Fels-Klerx et al. (2005)). Methods for applying expert judgments are
reviewed in Chapter 2. We may note here that expert uncertainty assessments are
regarded as statistical hypotheses, which may be tested against data and combined
with a view to optimizing performance of the resulting ‘decision maker’.

The experts have detailed knowledge of processing lines, but owing to the
scarcity of measurements, they have no direct knowledge of the transfer mech-
anisms defined by the model. Indeed, use of environmental transport models is
rather new in this area, and unfamiliar. Uncertainty about the transfer mechanisms
can be large, and, as in the dispersion example discussed in the preceding text,
it is unlikely that these uncertainties could be independent. Combining possible
values for transfer and removal mechanism independently would not generally
yield a plausible picture. Hence, uncertainty in one transfer mechanism cannot be
addressed independently of the rest of the model.

Our quantification problem has the following features:

e There are no experiments or measurements for determining values.
e There is relevant expert knowledge, but it is not directly applicable.

e The uncertainties may be large and may not be presumed to be independent,
and hence dependence must be quantified.
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These obstacles will be readily recognized by anyone engaged in mathematical
modelling for decision support beyond the perimeter of direct experimentation and
measurement. As the need for quantitative decision support rapidly outstrips the
resources of experimentation, these obstacles must be confronted and overcome.
The alternative is regression to wags and bogsats.

Although experts cannot provide useful quantification for the transfer coeffi-
cients, they are able to quantify their uncertainty regarding the number of Campy-
lobacter colonies on a broiler in the situation described below taken from the
elicitation protocol:

At the beginning of a new slaughtering day, a thinned flock is slaughtered in
a ‘typical large broiler chicken slaughterhouse’. ... We suppose every chicken to
be externally infected with 10° Campylobacters per carcass and internally with 108
Campylobacters per gram of caecal content at the beginning of each slaughtering
stage. . ..

Question Al: All chickens of the particular flock are passing successively through
each slaughtering stage. How many Campylobacters (per carcass) will be found
after each of the mentioned stages of the slaughtering process each time on the first
chicken of the flock?

Experts respond to questions of this form, for different infection levels, by
stating the 5%, 50% and 95% quantiles, or percentiles, of their uncertainty distri-
butions. If distributions on the transfer coefficients in Figure 1.4 are given, then
distributions per processing phase for the number of Campylobacter per carcass
(the quantity assessed by the experts) can be computed by Monte Carlo simula-
tion: We sample a vector of values for the transfer coefficients, compute a vector
of Campylobacter per carcass and repeat this until suitable distributions are con-
structed. We would like the distributions over the assessed quantities computed in
this way to agree with the quantiles given by the combined expert assessments. Of
course we could guess an initial distribution over the transfer coefficients, per-
form this Monte Carlo computation and see if the resulting distributions over
the assessed quantities happen to agree with the experts’ assessments. In general
they will not, and this trial-and-error method is quite unlikely to produce agree-
ment. Instead, we start with a diffuse distribution over the transfer coefficients, and
adapt this distribution to fit the requirements in a procedure called ‘probabilistic
inversion’.

More precisely, let X and Y be n- and m-dimensional random vectors, respec-
tively, and let G be a function from R" to R”. We call x € R" an inverse of y € R™
under G if G(x) = y. Similarly, we call X a probabilistic inverse of ¥ under G
if G(X) ~ Y, where ~ means ‘has the same distribution as’. If {Y|Y € C} is the
set of random vectors satisfying constraints C, then we say that X is an element
of the probabilistic inverse of {Y|Y € C} under G if G(X) € C. Equivalently, and
more conveniently, if the distribution of Y is partially specified, then we say that
X is a probabilistic inverse of ¥ under G if G(X) satisfies the partial specification
of Y. In the current context, the transfer coefficients in Figure 1.4 play the role of
X, and the assessed quantities play the role of Y.
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In our Campylobacter example, the probabilistic inversion problem may now
be expressed as follows: Find a joint distribution over the transfer coefficients such
that the quantiles of the assessed quantities agree with the experts’ quantiles. If
more than one such joint distribution exists, pick the least informative of these.
If no such joint distribution exists, pick a ‘best-fitting’ distribution, and assess its
goodness of fit.

Probabilistic inversion techniques are the subject of Chapter 9.

In fact, the best fit produced with the model in Figure 1.4 was not very good.
It was not possible to find a distribution over the transfer coefficients, which, when
pushed through the model, yielded distributions matching those of the experts. On
reviewing the experts’ reasoning, it was found that the ‘best’ expert (see Chapter 2)
in fact recognized two types of transfer from the chicken skin to the environment. A
rapid transfer applied to Campylobacter on the feathers, and a slow transfer applied
to Campylobacter in the pores of the skin. When the model was extended to accom-
modate this feature, a satisfactory fit was found. The second model, developed after
the first probabilistic inversion, is shown in Figure 1.5.

Distributions resulting from probabilistic inversion typically have dependencies.
In fact, this is one of the ways in which dependence arises in uncertainty analysis.
We require tools for studying such dependencies. One simple method is to simply
compute rank correlations. Notions of correlation and their properties are discussed
in Chapter 3. For now it will suffice simply to display in Table 1.1 the rank cor-
relation matrix for the transfer coefficients in Figure 1.5, for the scalding phase.

General model (2)

hicken

Neny s e Nyt
BextB
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P E §EE R iR
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Figure 1.5 Processing phase model after probabilistic inversion.



