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Preface

This book wrote itself over the period of August 1990 to December 1997. It is a
result of my teaching the graduate course Linear System Theory at Virginia
Polytechnic Institute and State University. This is a first course in linear systems
taught in the Bradley Department of Electrical and Computer Engineering.

Target Audience

The book is intended to be a comprehensive treatment of the use of linear state
space system theory in engineering problems. It is targeted at seniors and first-
year graduate students, although much of the material will be accessible to
students with only an understanding of basic signals and systems principles. It is
intended to gather into a single volume the linear algebra, vector space, and state
space theories now used in many engineering texts, but which are often covered
in separate courses and separate departments. The book will have appeal to
students in all engineering departments.

Whereas many texts introduce state space theory, it is often presented as a
supplement to frequency-domain material, such as after classical methods in
control systems or after transfer functions in signals and systems texts. Such
texts often forsake the mathematical basics necessary for true understanding of
state space modeling and analysis. Rather than use frequency-domain analysis
as a prelude to state space, this text uses the more natural and meaningful
foundation of vector spaces and linear algebra. Thus, state space analysis can be
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understood from the mathematical foundations of its own domain, rather than as
a counterpart to frequency-domain methods. This text would be ideal in a course
dedicated to time-domain analysis (both continuous and discrete). It would also
be an appropriate text for a school that treats state variable analysis as a stand-
alone course, independent of a student’s interest or preparation in control
systems. It is written in such a way that it can be read; it is not merely a
collection of linear algebraic facts arranged in an optimal manner.

Content and Organization

The text is organized into two parts. Part 1 begins with a review of linear
algebra and vector spaces, both from a geometric viewpoint. This is done in a
manner that complements the material presented in a student’s mathematics
courses, which sometimes leave the student confused by the distinction between
linear algebra and matrix theory. It is assumed that students know some matrix
theory (determinants, inverses, gaussian elimination, etc.), but not necessarily
linear algebra on any abstract level. Furthermore, it exploits the engineering
student’s training in spatial relationships, facilitating intuitive understanding. By
addressing the engineering student, we can focus on the practical matters,
geometry, applications, and implementation issues of linear systems, thus
maintaining a student’s engineering context throughout. This mathematical
introduction is rigorous enough to stand on its own, but not so encumbered by
proofs that engineering relevance is sacrificed. While graduate students with
sufficient mathematical background might skip it, even a student with a good
understanding of vector spaces might benefit from the geometric perspective
offered.

As part of the discussion of the mathematical preliminaries, linear algebraic
systems are treated. Topics such as subspaces, orthogonal projections, basis
changes, inner products, and linear transformations are critical to true
understanding of the state space, so it is important that they be covered in some
detail. Again, these methods are used to study the geometry of physical systems
sometimes neglected in engineering texts. A student without knowledge of such
issues would otherwise miss the underlying meaning of such common concepts
of eigenvalues and eigenvectors, simultaneous equations, Fourier analysis, and
similarity transformations.

Only after these algebraic topics are covered are linear differential methods
introduced in Part 2. It is then that we cover the topics that are often given in
controls texts as the linear system “basics.” The latter part of the book contains
control system applications and principles. For all of these latter chapters of the
book, a familiarity with s-domain and w-domain analysis is useful, but a deep
understanding of classical control or signal processing is not required.

Both continuous-time and discrete-time systems are discussed throughout,
although z-domain material is minimized. Because certain developments in state
space systems are more easily understood in one domain or the other, this
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parallel presentation gives us the flexibility to introduce examples from either
domain at our convenience. For example, controllability tests are particularly
easy to derive in discrete-time, so that is where they should be first introduced.

It is inescapable that computer-aided engineering (CAE) is an integral
component of linear system usage. There are now dozens of books dedicated to
the use of MATLAB® for linear system and control system design. Recognizing
the importance of the computer but wishing to avoid a book tied too closely to
computer simulations, we will make use of margin notes wherever a MATLAB
command might do the numerical work of the accompanying discussion,
denoted by a superscript M on the applicable term, e.g., rank™. For example, we
use the margin to indicate the availability of certain MATLAB commands,
functions, and toolboxes, but we do not assume that MATLAB programming is
a required component of the course, nor does the book instruct on its usage. The
margin notes refer the reader to Appendix B, which contains summaries for the
commands most relevant to the topic at hand. In addition, the end-of-chapter
exercises include some computer-based problems, but these problems will not
necessarily be tailored to MATLAB.

Most of the material contained in this book can be covered in a single three
semester-hour course. If the course is indeed an undergraduate or first-year
graduate course, then Chapter 11 might not be covered in that time span. It is
recommended that even students with extensive mathematical preparation not
omit the early chapters, because the geometric perspective established in these
chapters is maintained in the latter chapters. Furthermore, the applications-
oriented examples denoted by italics in the table of contents are concentrated in
Part 1. In most of the examples thereafter, it will usually be assumed that the
physical application has been modeled in state space form. However, if little
mathematical review is necessary, then Chapter 11, Introduction to Optimal
Control and Estimation, can be used to tie together the contents of the previous
ten chapters, and make the course more of a control than a systems course.

John S. Bay
Blacksburg, Virginia
1998
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