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PREFACE

This book deals with bodies and lattices in the n-dimensional euclidean
space. The bodies considered are convex bodies centered at the origin or,
more generally, star bodies (with respect to the origin). With each star
body there is associated a continuous distance function; it is a positively
homogeneous function assuming the value 1 at the points of the boundary
of the given body.

The correspondence between star bodies and distance function just
sketched brings on the interchange of the geometric and the arithmetic
viewpoint that is typical for the subject. Historically, the arithmetic
viewpoint existed first. But the geometry of numbers as such came into
being only when MINKOWSKI [GZ] brought in the geometric viewpoint.
A number of later works, a.o. those by REMAK, OPPENHEIM, DAVENPORT
and BARNES, are plainly of an arithmetic character or give proof of an
arithmetizing tendency. On the other hand, the réle and the fruitfulness
of geometric ideas is apparent in the works of BLICHFELDT, MORDELL,
MAHLER and ROGERS. In the present monograph the geometric viewpoint
is prevalent. Circumstantial digressions of a computational nature have
not been inserted. Furthermore, several proofs available in the literature
have been remodeled on more geometric lines.

A basic problem in the geometry of numbers may be stated as follows.
Under which conditions does a given convex body, or star body, contain
a point with integral coordinates, not all zero? One may also ask under
which conditions, for each point z of the space, there is a point x in a given
body such that x—z is a point with integral coordinates. These two
problems give rise to the introduction of the arithmetical (or homoge-
neous) and the inhomogeneous minimum of a distance function with
respect to the lattice of points with integral coordinates. Instead of the last
lattice one may work with an arbitrary lattice as well. One can then define
the absolute homogeneous minimum and (as they are called in this book)
the lower and upper absolute inhomogeneous minimum of a distance
function. Geometrically speaking, these quantities correspond with the
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critical determinant, the covering constant and the inhomogeneous
determinant of a star body. The study of these quantities is the object
of the geometry of numbers.

It is the aim of the present book to give a systematic account of our
present knowledge in the field just indicated. It contains a detailed ex-
position of the general theory and presents complete proofs of all the main
results. Further results known in the literature are commented throughout
the book. Sometimes, for more details, the reader is referred to the
existing books on the subject, in particular CASSELS’ book and KELLER’s
encyclopaedia article. Some topics discussed at length are VOrRONOI poly-
hedra, polar reciprocal and compound convex bodies, anomaly of a star
body, packing and covering, methods of BLICHFELDT and MORDELL,
CoXEeTER’s reflexible forms, MARKOV’s minimal forms, and asymmetric
inequalities. There are two sections (secs. 45 and 51) on diophantine
approximation. Considerable attention is given to inhomogeneous
problems. Analogues of the geometry of numbers in (finite-dimensional)
spaces over the field of complex numbers, non-archimedean fields, or the
ring of adéles are not considered. The bibliography is fairly complete
as to the period ranging from the year 1935 (the year of publication of
KoksmA’s Ergebnisse report) to the year 1965.

About the arrangement of the material the following may be said. A
long chapter (chapter 2) is devoted nearly exclusively to convex bodies
and points with integral coordinates. There is a separate chapter on
MAHLER’s theory of star bodies. The last two chapters deal with arith-
metical problems.

The prerequisites necessary for the understanding of the book are rather
modest. They only comprise elementary real analysis and some basic facts
about algebraic number fields (exposed briefly in section 4), measure
theory and topological spaces. At a few places use is made of the theory
of continued fractions.

The sections of the book are numbered consecutively; they are divided
into subsections. The numbering of the definitions, theorems and formulas
starts afresh in each new section; if they are referred to in a different
section, then the number of that section is placed before the number of
the definition, theorem or formula. Capital letters between square
brackets refer to Part A of the bibliography (books and monographs).
A number and a letter between square brackets refer to Part B (papers).
Here, the convention is that the number is that of the (main) section
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where the paper in question is commented. Thus, the bibliography may
equally well serve as an author index.

The author is indebted to the late Professor Koksma who stimulated
him to write this book. Most of the bibliographical research was done
when he was a scientific officer in the Department of Pure Mathematics
of the Mathematical Centre at Amsterdam. His thanks are due to Mrs.
Troelstra and Mrs. van Proosdij for preparing the typescript. Finally,
he thanks the editors of the “Bibliotheca Mathematica” for taking up
the book in their series.

Amsterdam, July 1969 GERRIT LEKKERKERKER



Preface to the second edition

The second edition of this book was prepared jointly by P. M. Gruber
and the author of the first edition. The authors decided to retain the
existing text, with minor corrections, and to add to each chapter supple-
mentary sections on the more recent developments. While this has
obvious drawbacks, it has the definite advantage of showing cleariy
where recent progress took place and in what areas interesting results
in the future may be expected.

The development of the geometry of numbers in the last two decades
has some remarkable features. In the 60’s progress was slow. The main
problems were either solved or seemed untractable. The attempts, for
instance, to improve upon the Minkowski-Hlawka theorem or to settle
the famous conjecture on the product of non-homogeneous linear forms
met with little success. In the 70’s, however, the situation has changed
drastically and the interest in the field began to rise again. The change
was brought about by two factors. On the one hand significant progress
was achieved in classical problems such as the ball packing problem, the
conjecture on non-homogeneous linear forms, the determination of the
homogeneous and non-homogeneous minima of quadratic forms and
the analysis of the Markov spectrum. On the other hand new and
vigorous branches of the geometry of numbers developed; we mention
only lattice polytopes and zeta functions.

Progress was not uniform; this can be seen from the different lengths
of the supplements to the various chapters. Much progress was achieved
in geometric areas such as packing, covering and tiling which are close
to discrete geometry and crystallography. Another feature, common in
present day mathematics, is the appearance of many new and un-
expected links with other branches of mathematics. Notable examples
are modular forms, coding theory and numerical integration.

While a complete coverage of the geometry of numbers is out of reach
we hope to have given a fearly good account of what is going on in this
area. The book can thus be used as a reference work but also as an
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advanced introduction to geometry of numbers. It is hoped that the
many implicitly of explicitly stated open problems will contribute to
further research in this area.

We have tried to arrange the material such that the new sections can
be read independently from the original text. A reader looking for an
easy introduction to the subject is invited to first consult the joint
booklet on solved and unsolved lattice point problems by one of the
authors with Erdés and Hammer which is broader in scope and much
more elementary.

Whereas in the 40’s and 50’s the centres of the geometry of numbers
were Manchester, Cambridge, London and Vienna, in more recent times
much progress was achieved in Columbus, Chandigarh, Adelaide and
in Moscow and Leningrad.

We are very grateful to many colleagues and friends in these and
other places who helped us in the prepration of this edition. In particular
we should like to thank Professors Bambah, Chalk, Coxeter, Dumir,
Groemer, Hans-Gill, Hlawka, Lenstra, Malysev, McMullen, Rankin,
Ryskov, Schnitzer, Seidel, Skubenko, White, Wills and Zassenhaus
and Doctors Betke, G. Fejes Toth, Horvath, Miller, Nowak, Ramharter,
Sorger, Szabo and Temesvari.

Each of the two authors has a different mathematical background
and different interests. Through many (often difficult, but always tem-
perate and friendly) discussions we have tried to give the new sections
a balanced appearance. We hope that still existing inhomogeneities
rather improve than diminish the liveliness of the presentation.

The joint work was made possible through several visits of G. Lekker-
kerker to Vienna and of P. Gruber to Amsterdam. We gratefully
acknowledge the support of ZWO, the Dutch Organisation for the
Advancement of Pure Science, which made possible the stays at
Amsterdam..

Finally, our gratitudes goes to Susanna Nagy who prepared the
typescript and to the publisher who met our wishes.

PETER M. GRUBER and C. GERRIT LEKKERKERKER
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CHAPTER 1

PRELIMINARIES

The geometry of numbers to which this book is devoted deals with
arbitrary bodies and arbitrary lattices in the n-dimensional euclidean
space. Its aim is to study various quantities describing the behaviour of a
body with respect to a lattice.

In this chapter we expose a number of basic properties of convex
bodies, star bodies and lattices. The last section will be devoted to
algebraic number fields.

1. Notations. Convex bodies

1.1. Throughout this book we use the following notations concerning
points and sets.

The n-dimensional euclidean space is denoted by R". Its points are
sometimes considered as vectors. Its dimension » will nearly always be = 2.

Points of R" are always denoted by small Latin letters; we use the
letters u, v, w, x, y, z, a, b, ¢, d, e, and employ accents or upper indices.
In particular, the letters u, v, w are used for points with integral co-
ordinates. The coordinates of a vector are denoted by the same letter,
with a lower index 1, . . ., n; if a letter denoting a vector has already an
(upper) index, then that index is put after the coordinate index. Thus:

a=(a;,....a,), a =(ay,...a), x= (s Xu)

If powers of coordinates are considered, then brackets are used: (x,)?,
(x;)*. Except for coordinates of points in R" and elements of matrices,
real numbers are denoted by small Greek letters. Integers are denoted by
i,j, k,1,m, n,p,q,r,s,t, with or without lower indices. However, i may
stand for ./ —1 and s, ;> t;; may be elements of (real symmetric) matrices
(s57), (#;;). If a is real, then [a] denotes the largest integer < a. The letters
[, g, h are used to denote so-called distance functions of convex bodies
or star bodies; otherwise, functions are indicated by small Greek letters
and, in a number of cases, by capitals.



2 PRELIMINARIES CH. 1

The origin is denoted by o. For i = 1,...,n, the point which has
ith coordinate 1, whereas the other coordinates are all zero, is denoted
by e'. Further, vectorial sums and differences x+y and multiples ax
are used. The length of a vector x is

el = {Gen)*+ - -+ + ()},
and the inner product of x and y is
Xy =XY1t " +X Y-

Next, k < n points x, ..., x* are called independent if they do not
belong to a linear subspace of R" of dimension less than k; the linear
subspace generated by k independent points x!, ..., x* is denoted by
L(x',...,x*). For k = 0, by the last expression we mean the set con-
sisting of the single point o.

Arbitrary sets in R" are denoted by capital letters. If a set M is measur-
able (in the sense of Lebesgue), then its Lebesgue measure is called the
volume of M and denoted by V(M) or V. The set consisting of finitely
many points x', ..., x* is denoted by {x',..., ¥*}; in particular, {x} is
the set consisting of the single point x. The set of points x for which
some given property P(x) holds, is denoted by {x: P(x)}. The set of
values of any function ¢ on this set is written as {¢(x): P(x)}; a similar
notation is used for functions of other variables than points in R".
Furthermore, the following notations are used:

M + x: the set of points y+x with ye M,
aM: the set of points ax, x € M (o real),
M+ M,: the set of points x+y with xe M,;, ye M,.

It should be observed that, in general, the sets M+ M and 2M are
not identical. The set M — M is also denoted by ZM and is called the
difference set of M.

The symbols N, U, = are used to denote the set-theoretical inter-
section and union and the inclusion relation, respectively. Further,
denotes the empty set, and M,\M, denotes the set of points which
belong to M, but not to M,.

An open connected set M in R" is called a region. If a set M has inner
points and is contained in the closure of its open kernel, it is called a
body or a domain. The open kernel of a set M is denoted by int M and
the closure of M by M.
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1.2. A set H in R" is called convex, if, for any two points x, y € H,
it contains all points of the segment joining x and y. If this property
holds, then, in particular, 3(x+y)e H if x, ye H. Conversely, each
point x € H can be written as 4(x+x). So we have the formula

(1) H+H = 2H.
More generally, we have
) aH+pH = (x+B)H  if o, p > 0.

If a convex set is not contained in a hyperplane, i.e., if H contains
n+ 1 independent points, then it has inner points. It is a body, because
all inner points of any segment joining a point of H and a point of int H
belong to int H.

A convex body H is called strictly convex if, for each two points
x,ye H(x # y), all points 3x+(1—9)y with 0 < 3 < 1 are inner points
of H.

Examples of convex bodies in R" are (solid) spheres, cubes and, more
generally, ellipsoids and parallelotopes*. A convex polyhedron P is the
intersection of finitely many half-spaces, e.g., the half-spaces which
contain the polyhedron P and whose bounding hyperplanes contain the
(n—1)-dimensional faces of P. Conversely, the intersection of arbitrarily
many half-spaces is always a convex set; if the number of half-spaces is
finite, it is a convex polyhedron. Further examples are convex cones
(cylinders) possibly truncated by a hyperplane (two parallel hyperplanes).

The orthogonal projection of a convex H onto a hyperplane is again
convex. If H is closed and H' is the projection of H onto the plane
x, = 0, then H is given by two inequalities of the type

3) (X1 e e Xpo1) £ X S 02(X15 -0 0 Xpmp)s

where (x,, ..., x,_,) runs through H' and ¢,, ¢, are certain real func-
tions defined on H'. Clearly, the function ¢, is convex and the function
@, is concave.

We shall often have to consider so-called tac-planes of a given convex
body. In general, a hyperplane P is called a tac-plane to a set M if P
contains at least one point of M and M is contained in one of the (closed)
half-spaces bounded by P. A tac-strip is a (closed) strip bounded by two

* Instead of ‘parallelotope’ we shall often use the word ‘cell’.



