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MAGNETIC MATERIALS
Fundamentals and Applications

Magnetic Materials is an excellent introduction to the basics of magnetism, mag-
netic materials, and their applications in modern device technologies. Retaining the
concise style of the original, this edition has been thoroughly revised to address sig-
nificant developments in the field, including the improved understanding of basic
magnetic phenomena, new classes of materials, and changes to device paradigms.
With homework problems, solutions to selected problems, and a detailed list of
references, Magnetic Materials continues to be the ideal book for a one-semester
course and as a self-study guide for researchers new to the field.

New to this edition:

¢ Entirely new chapters on exchange-bias coupling, multiferroic and magnetoelectric mate-
rials, and magnetic insulators

e Revised throughout, with substantial updates to the chapters on magnetic recording and
magnetic semiconductors, incorporating the latest advances in the field

e New example problems with worked solutions

NICOLA A. SPALDIN is a Professor in the Materials Department at the Univer-
sity of California, Santa Barbara. She is an enthusiastic and effective teacher, with
experience ranging from developing and managing the UCSB Integrative Gradu-
ate Training Program to answering elementary school students’ questions online.
Particularly renowned for her research in multiferroics and magnetoelectrics, her
current research focuses on using electronic structure methods to design and under-
stand materials that combine magnetism with additional functionalities. She was
recently awarded the American Physical Society’s McGroddy Prize for New Mate-
rials for this work. She is also active in research administration, directing the
UCSB/National Science Foundation International Center for Materials Research.



Magnus magnes ipse est globus terrestris.
William Gilbert, De Magnete. 1600.
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1

Review of basic magnetostatics

Mention magnetics and an image arises of musty physics labs peopled
by old codgers with iron filings under their fingernails.

John Simonds, Magnetoelectronics today and tomorrow,
Physics Today, April 1995

Before we can begin our discussion of magnetic materials we need to understand
some of the basic concepts of magnetism, such as what causes magnetic fields, and
what effects magnetic fields have on their surroundings. These fundamental issues
are the subject of this first chapter. Unfortunately, we are going to immediately run
into a complication. There are two complementary ways of developing the theory
and definitions of magnetism. The “physicist’s way” is in terms of circulating
currents, and the “engineer’s way” is in terms of magnetic poles (such as we find
at the ends of a bar magnet). The two developments lead to different views of
which interactions are more fundamental, to slightly different-looking equations,
and (to really confuse things) to two different sets of units. Most books that you’ll
read choose one convention or the other and stick with it. Instead, throughout this
book we are going to follow what happens in “real life” (or at least at scientific
conferences on magnetism) and use whichever convention is most appropriate to the
particular problem. We’ll see that it makes most sense to use Systéme International
d’Unités (SI) units when we talk in terms of circulating currents, and centimeter—
gram—second (cgs) units for describing interactions between magnetic poles.

To avoid total confusion later, we will give our definitions in this chapter and the
next from both viewpoints, and provide a conversion chart for units and equations at
the end of Chapter 2. Reference [1] provides an excellent light-hearted discussion
of the unit systems used in describing magnetism.



4 Review of basic magnetostatics

1.1 Magnetic field
1.1.1 Magnetic poles

So let’s begin by defining the magnetic field, H, in terms of magnetic poles.
This is the order in which things happened historically — the law of interaction
between magnetic poles was discovered by Michell in England in 1750, and by
Coulomb in France in 1785, a few decades before magnetism was linked to the
flow of electric current. These gentlemen found empirically that the force between
two magnetic poles is proportional to the product of their pole strengths, p, and
inversely proportional to the square of the distance between them,

P1P2 (1.1)

F « .
>

This is analogous to Coulomb’s law for electric charges, with one important differ-
ence — scientists believe that single magnetic poles (magnetic monopoles) do not
exist. They can, however, be approximated by one end of a very long bar magnet,
which is how the experiments were carried out. By convention, the end of a freely
suspended bar magnet which points towards magnetic north is called the north
pole, and the opposite end is called the south pole.! In cgs units, the constant of
proportionality is unity, so

F=P2 gy, (1.2)
r

where r is in centimeters and F is in dynes. Turning Eq. (1.2) around gives us the
definition of pole strength:

A pole of unit strength is one which exerts a force of 1 dyne on another unit pole
located at a distance of 1 centimeter.

The unit of pole strength does not have a name in the cgs system.
In ST units, the constant of proportionality in Eq. (1.1) is uy/47, so

F_@Plpz

= in 2 (SD), (1.3)

where g is called the permeability of free space, and has the value 47 x 1077
weber/(ampere meter) (Wb/(Am)). In SI, the pole strength is measured in ampere
meters (A m), the unit of force is of course the newton (N), and 1 newton = 10°
dyne (dyn).

! Note, however, that if we think of the earth’s magnetic field as originating from a bar magnet, then the south
pole of the earth’s “bar magnet” is actually at the magnetic north pole!



1.1 Magnetic field 5

Figure 1.1 Field lines around a bar magnet. By convention, the lines originate at
the north pole and end at the south pole.

To understand what causes the force, we can think of the first pole generating a
magnetic field, H, which in turn exerts a force on the second pole. So

F=(5)p=Hp, (1.4)
giving, by definition,
H= %. (1.5)

So:
A field of unit strength is one which exerts a force of 1 dyne on a unit pole.

By convention, the north pole is the source of the magnetic field, and the south
pole is the sink, so we can sketch the magnetic field lines around a bar magnet as
shown in Fig. 1.1.

The units of magnetic field are oersteds (Oe) in cgs units, so a field of unit
strength has an intensity of 1 oersted. In the SI system, the analogous equation for
the force one pole exerts on another is

Ko (P1 Ho
F:—(—) = — s 1'6
4w \2) 2T g P (1.6)

yielding the expression for H = %% in units of amperes per meter (A/m);
1 Oe = (1000/47m) A/m.

The earth’s magnetic field has an intensity of around one-tenth of an oer-
sted, and the field at the end of a typical kindergarten toy bar magnet is around

5000 Oe.



