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Preface

The content of this book is taken from my manuscripts ‘On the global theory
of Shintani zeta functions I-V’ which were originally intended for publication in
ordinary journals. However, because of its length and the lack of a book on preho-
mogeneous vector spaces, it has been suggested to publish them together in book
form.

It has been more than 25 years since the theory of prehomogeneous vector spaces
began. Much work has been done on both the global theory and the local theory
of zeta functions. However, we concentrate on the global theory in this book. I feel
that another book should be written on the local theory of zeta functions in the
future.

The purpose of this book is to introduce an approach based on geometric invariant
theory to the global theory of zeta functions for prehomogeneous vector spaces.

This book consists of four parts. In Part I, we introduce a general formulation
based on geometric invariant theory to the global theory of zeta functions for preho-
mogeneous vector spaces. In Part II, we apply the methods in Part I and determine
the principal part of the zeta function for Siegel’s case, i.e. the space of quadratic
forms. In Part III, we handle relatively easy cases which are required to handle
the case in Part IV. In Part IV, we use the results in Parts I-III to determine the
principal part of the zeta function for the space of pairs of ternary quadratic forms.

We expanded the introduction of the original manuscripts to help non-experts to
have a general idea of the subject. What we try to discuss in the introduction is the
history of the subject, and what is required to prove the existence of densities of
arithmetic objects we are looking for. Even though the theory of prehomogeneous
vector spaces involves many topics, we concentrate on two aspects of the theory, i.e.
the global theory and the local theory, in the introduction.

Parts I-III of this book correspond to Parts I-III of the above manuscripts, and
Part IV of this book corresponds to Parts IV and V of the above manuscripts. Since
the manuscripts were originally intended for publication in ordinary journals, certain
changes were made to make this book more comprehensible and self-contained.

However, it is impossible to make this book completely self-contained, and we
have to require a reasonable background in adelic language, basic group theory, and
geometric invariant theory. For this, we assume that the reader is familiar with the
following four books and two papers

[1] A. Borel, Some finiteness properties of adele groups over number fields,

[2] A. Borel, Linear algebraic groups,

[28] G. Kempf, Instability in invariant theory,

[35] F. Kirwan, Cohomology of quotients in symplectic and algebraic geometry,

[46] D. Mumford and J. Fogarty, Geometric invariant theory,

[79] A. Weil, Basic number theory.

Weil’s book [79] is a standard place to learn basic materials on adelic language.
Since we do not depend on class field theory, it is enough for the reader to be
familiar with the first several chapters of Weil’s book. Borel’s paper [1] is a place to
learn properties of Siegel domains. We need two facts in geometric invariant theory.
One is the Hilbert—-Mumford criterion of stability, and the other is the rationality of
the equivariant Morse stratification. Mumford-Fogarty [46] and Kirwan [35] are the
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standard books to learn geometric invariant theory and equivariant Morse theory.
The rationality of the equivariant Morse stratification was proved by G. Kempf in his
paper [28]. However, even though the proofs of the above two facts are technically
involved, the statements of these facts are fairly comprehensible and do not require a
special background to understand. Therefore, if the reader is unfamiliar with these
subjects, I recommend the reader not to worry about the proofs of the statements
in this book which we quote from geometric invariant theory and look at the above
documents later if necessary.

We have three original results in this book. One is a generalization of ‘Shintani’s
lemma’ to GL(n) concerning estimates of the smoothed Eisenstein series. Shintani
proved this lemma for GL(2) in [64]. The statement of the result is Theorem
(3.4.31). The second result is the determination of the principal part of the zeta
function for the space of quadratic forms. The statement of the result is Theorem
(4.0.1). Shintani himself studied this case and determined the poles of the associated
Dirichlet series for quadratic forms which are positive definite in [65]. The last
and the main result of this book is the determination of the principal part of the
zeta function for the space of pairs of ternary quadratic forms. The statement of
the result is Theorem (13.2.2). We discuss the relevance of these results in the
introduction,

D. Wright contributed to this book in many places. He suggested the use of
‘Wright’s principle’ in §3.7 after he read the first manuscript of my paper [86].
Also §0.5 is largely from his note. He also found the reference concerning Omar
Khayyam when we wrote our paper [84], and helped me to find some references
in this book. I would like to give a hearty thanks to him. As I mentioned above,
this book is based on geometric invariant theory. For this, I owe a great deal to D.
Mumford for teaching me geometric invariant theory and equivariant Morse theory.
I was staying at Institute for Advanced Study during the academic year 1989-1990,
and at Sonderforschungsbereich 170 Gottingen during the academic year 1990-1991
while I was writing the manuscript of this book. I would like to thank them for
their support of this project. This work was partially supported by NSF Grants
DMS-8803085, DMS-9101091.

Akihiko Yukie
February 1992, Stillwater, Oklahoma, USA



Notation

For a finite set A, the cardinality of A is denoted by #A. If f,g are functions
on a set X and |f(z)| £ Cg(z) for some constant C independent of z € X, we
denote f(z) < g(z). If z,y € R, we also use the classical notation r < y if y is a
much larger number than z. Since we use this classical notation only for numbers,
and not for functions, we hope the meaning of this notation will be clear from the
context.

Suppose that G is a locally compact group and T is a discrete subgroup of G
contained in the maximal unimodular subgroup of G. For any left invariant measure
dg on G, we choose a left invariant measure dg (we use the same notation, but the
meaning will be clear from the context) on X = G/T" so that

/Gf(g)dg=/fo(gv)dg-

Yer

We denote the fields of rational, real, and complex numbers by Q, R, C respec-
tively. We denote the ring of rational integers by Z. The set of positive real numbers
is denoted by R;. For any ring R, R* is the set of invertible elements of R. Let
k be a number field, and oy its integer ring. Let 90, Moo, MR, Mc, My be the set
of all the places, all the infinite, real, imaginary, finite places of k respectively. Let
Ay (resp. A}‘) be the restricted product of the k,’s (resp. k)’s) over v € 9M;.
Let koo (resp. k%) be the product of the k,’s (resp. kX’s) over v € Moo. Then
A=keo X Ap, AX = kX x Af. If z € A or A%, we denote the finite (resp. infinite)
part of z by x; (resp. o). If V is a vector space over k, we define Vj, Veo» Vs
similarly. Let (Va), & (V), % (V}) be the spaces of Schwartz—Bruhat functions.

For any place v, k, is the completion at v. If v € My, 0, C k, is, by definition,
the integer ring of k,. Let | | be the adelic absolute value. The absolute value of k,
is denoted by | |,. For z € A*, we denote the product of the [z[,’s over all v € 9
(resp. v € Myo) by |z|s (resp. |z|w). For v € My, let 7, be the prime element,
and ||, = g;'. Note that if v is imaginary and |z| is the usual absolute value,
|zo = ||

Let 71, 7o be the numbers of real and imaginary places respectively. Let h, R, and
e be the class number, regulator, and the number of roots of unity of k respectively.
Let Ay be the discriminant of k. Let €, = 2™ (27)"2hRe~!. We choose a Haar
measure dr on A so that [ Ak dr = 1. For any finite place v, we choose a Haar
measure dz, on k, so that fov dz, = 1. We use the ordinary Lebesgue measure dz,,
for v real, and dz., A dz, for v imaginary. Then dz = ]Ak|‘% IL, dz, (see [79, p.
91]).

For A € Ry, let A be the idele whose component at v is AEa if v € M and 1
if v € M. Clearly, |A| = A\. We identify R, with a subgroup of AX by the map
A — A Let A = {z € AX | |z] = 1}. Then AX = A'/k* x Ry, and Al/k* is
compact. We choose a Haar measure d*t' on A! so that [, Jex @t = 1. Using
this measure, we choose a Haar measure d*¢ on AX so that

/Ax f(t)dx,*,:/ON/A1 FAHdX Ad* £,
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where d* X = A~ld\. For any finite place v, we choose a Haar measure d*¢, on k;
so that [, d*t, = 1. Let d*t,(z) = ||;1dz if v is real, and d¥t,(z) = |z|; dzAdZ
if v is imaginary. Then d*t = €' [T, d*t, (see [79, p. 95]).

Let <>= [], <>. be a character of A/k. Let v be a finite place. Suppose that
<>, is trivial on 7 “* 0,, and non-trivial on 7 ¢=1lp,. Then we define a, = w<*. Let
e(z) = e2™V=1=, If v is a real place, there exists a, € kX such that < z >,= e(a,z),
and if v is an imaginary place, there exists a, € kX such that < z >,= e(a,z+TT).
For almost all v, ¢, = 0. Let a = (a,), € AX. Then |a] = |Ag|™! (see [79, p. 113]).
The idele a is called the difference idele of k.

Let (x(s) be the Dedekind zeta function. As in [79], we define

Zu(s) = 18ulE (774T(5)) ™ ((2m) ()™ Gu(o).
We define Ry = Ress=1 Zk(s).

For a character w of A* /k*, we define §(w) = 1 if w is trivial, and §(w) = 0
otherwise.



Introduction

§0.1 What is a prehomogeneous vector space?

One contribution of Gauss to number theory in the early nineteenth century was
the discovery of the correspondence between equivalence classes of integral binary
quadratic forms and ideal classes of quadratic fields. This correspondence can be
described as follows.

Let f(v) = f(v1,v2) = LoV} +T1v1v2 + 2203 be a binary quadratic form such that
To, T1, To are rational integers. We define an action of the group {+1} x GL(2,Z) on
the set of integral binary quadratic forms so that if g = (¢,91) where ¢t = +1,91 €
GL(2,Z), gf(v) = tf(vg:1). We consider equivalence classes of integral binary qua-
dratic forms with respect to this action. It is easy to see that the discriminant
:r% — 4zoz5 is invariant under such an action. On the other hand, let m be a square
free integer, and consider a non-zero ideal a of the ring of algebraic integers in the
field k = Q(/m). The discriminant Ay of k is m if m = 1 mod 4 and 4m if m = 2
or 3 mod 4. As a module over Z, a is generated by two elements, say a, 8, because
a is a torsion free rank two module over Z. Consider the binary quadratic form
fa(v) = N(a)"!N(av; + Bvs), where N(a), N(av; + Buvs) are the norms. It is easy
to see that f, depends only on the ideal class of a. Moreover, it turns out that ideal
classes of k correspond bijectively to equivalence classes of primitive integral binary
quadratic forms with discriminant Ay by the map a — fq.

Gauss established this correspondence in [16], and the reader can see a modern
proof in Theorem 4 [3, p. 142]. Here, we consider a natural question: why do
we consider such a correspondence? One conceptual reason is that it gives us a
parametrization of ideal classes of quadratic fields in terms of a group action on
a vector space. We can use this parametrization to actually compute the class
numbers of quadratic fields. But what we are interested in in this book is a more
analytic question. In order to illustrate our purpose, let us describe the conjecture
of Gauss.

Let hq be the number of SL(2, Z)-equivalence classes of primitive integral binary
quadratic forms which are either positive definite or indefinite. Then Gauss conjec-
tured the asymptotic property of the average of hy. However, an integral form in
the sense of Gauss is a form zov? + 2z1v1v2 + asg'v% such that zg, z1, x2 are integers.
Here we consider zov? + z1v1v2 + x9v2 such that zg, 1, T2 are integers. With this
understanding, we have the following asymptotic formula

U 3
(0.1.1) > ha~ g,
0<—d<z 184(3)

3
2

hal L
Z dOgEdel‘ &

o<d<z

where €g = (¢t + uv/d) and (t,u) is the smallest positive integral solution of the
equation 2 — du? = 1.

This conjecture was first proved by Lipschitz [42] for d < 0, and by Siegel [69] for
d > 0, and much work has been done on the error term estimate also (see [65, pp.
44,45) for example). However, we are allowing all integers d here, and if d = m2d’
and d’ is a square free integer, hg, hq are related by a simple relation. Therefore,
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we are counting essentially the same object infinitely many times in (0.1.1). If
k is a quadratic field over Q, let hi, R be the class number and the regulator
respectively. If d is a square free integer, hy is the number of ideal classes with
respect to multiplication by elements with positive norms. Therefore, this hy is
slightly different from A of a number field of discriminant d even though they are
closely related.

The problem of counting hx Ry of quadratic fields k was first settled by Goldfeld—
Hoffstein [17] and was slightly generalized by Datskovsky [9] from our viewpoint
recently. Here, we quote Datskovsky’s statement for the simplest case.

¢(2) -2 -3 —4y,.2
(0.1.2) Z hk'\'gn(l—p -p " +p %)z,
0<—Ap <z P
[k:Q]=2
2 - = _
Y heRi~ g(—3—)H(1—p 2o p P +p7Y)at,
0<Ap <=z P
(k:Ql=2

where k runs through quadratic fields and Ay is the discriminant. Note that 513—2) =
’1’—;. Therefore, (0.1.1) and (0.1.2) are very similar except for the difference between
i and [[,(1—p~2 —p=2 +p~).

Statements like (0.1.2) are the kind of density theorems we are looking for. We
discuss the difference between (0.1.1) and (0.1.2) later in the introduction, and we
go back to the space of binary quadratic forms again. The main ingredients of the
above correspondence were the group G = GL(2) acting on the vector space V of
binary quadratic forms, and the polynomial A(z) = 22 — 4z0z2 (z = (20, x1,z2))
which satisfies the property A(gz) = det gA(z) for g € GL(2),z € V. Moreover,
if we consider this vector space over an algebraically closed field, the generic point
is a single G-orbit. The fundamental reason why one can prove results like (0.1.1),
(0.1.2) is that we can use the Fourier analysis on the vector space V. Also when
we consider the averages as (0.1.1) or (0.1.2), we can use the value of A(z) to
average over. The fact that the generic point is a single orbit assures us that there
is essentially one choice of such a polynomial.

Sato and Shintani introduced the notion of prehomogeneous vector spaces in [60]
and generalized the situation as the above example. We now state the definition of
prehomogeneous vector spaces from our viewpoint.

Let k be an arbitrary field. Let G be a connected reductive group, V a repre-
sentation of G, and xv an indivisible non-trivial rational character of G, all defined
over k.

Definition (0.1.3) The triple (G,V, xv) is called a prehomogeneous vector space
if the following two conditions are satisfied.

(1) There exists a Zariski open orbit.

(2) There exists a polynomial A € k[V] such that A(gz) = X'(9)A(z) where X' is a
rational character and x' = x§ for some positive integer a.

Note that if A;, Ay are two polynomials as in the above definition, there exist
positive integers a, b such that %;,L is a G-invariant rational function. Since there
2

exists an open orbit, this implies that %i- is a constant function. Therefore, for any
2
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k-algebra R, the set V5° = {z € Vg | A(z) # 0} does not depend on the choice
of A, and we call it the set of semi-stable points. A polynomial A which satisfies
the property (2) is called a relative invariant polynomial. If V' is an irreducible
representation, the center of the image G — GL(V') has split rank one by Schur’s
lemma. Therefore the choice of xy is unique. So we call (G, V') a prehomogeneous
vector space also.

For the space of binary quadratic forms, let G = GL(1) x GL(2), and xv (¢,9) =
tdet g for g = (t,g). Then (G, V, xv) is a prehomogeneous vector space in the above
sense.

Before we start the discussion on prehomogeneous vector spaces, let us make one
more historical remark.

There is no doubt that Gauss was the first mathematician who recognized the
group theoretic approach to number theory. But one particular prehomogeneous
vector space had appeared already in the eleventh century.

The solution of cubic and quartic equations by radicals has been known for a long
time. But before the solution was found, there was a poet-mathematician Omar
Khayyam in medieval Persia who worked on this problem. He did not think it was
possible to solve cubic equations by radicals, and instead he tried to express the
solutions to cubic equations geometrically. For example, the solution of the equation
z® = N can be realized as the intersection of two parabolas y = z2,y? = Nz. After
the solution by radicals was found, his work has long been forgotten. However, it
is surprisingly related to the theory of prehomogeneous vector spaces.

What makes the space of binary quadratic forms so interesting is that we can
associate a quadratic field to a generic point of the vector space. More precisely, if
G is GL(1) x GL(2), V is the space of binary quadratic forms and xv (¢,g) = tdet g,
there is a map from Gq \ V§§® to the set of isomorphism classes of fields of degree
less than or equal to 2 over Q. This map is clearly surjective, and this surjectivity
is the reason why we count the class number of all the quadratic fields in (0.1.2).

Now, let us consider the group G = GL(3) x GL(2), and the vector space V
of pairs of ternary quadratic forms. If we define xv(g1,92) = (det g1)*(det g2)3,
the triple (G, V, xv) is a prehomogeneous vector space (see [59] or Chapter 8). If
z = (Q1,Q2) € Vi and @1, Q2 are ternary quadratic forms, we can consider the
set Zero(z)={v € P? | Q1(v) = Q2(v) = 0}. We call Zero(z) the zero set of
xz. We will show in Chapter 8 that (G,V, xv) is a prehomogeneous vector space
and V*° consists of points whose zero sets are four distinct points in P2. It is
easy to see that the field generated by the residue fields of points in Zero(z) is a
splitting field of a quartic equation. Now the question is if we can get all such fields
from pairs of ternary quadratic forms. This is easy because any quartic equation
z* 4+ 0123 + a22? 4 a3z + a4 = 0 can be written as an intersection of two conics as
follows.

y = 2%,9% + a17y + azz® + azx + a4 = 0.

But this is what Omar Khayyam did about 900 years ago, and he essentially proved
the surjectivity of the map from Gg \ V§® to the isomorphism classes of splitting
fields of quartic equations. For the works of Omar Khayyam, the reader should see
[74]. The analytic theory of this prehomogeneous vector space is the main topic of
this book, and we handle the global zeta function for this case in Part IV.
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§0.2 The classification

In this section, we discuss the classification of irreducible prehomogeneous vector
spaces over an algebraically closed field. Throughout this section, k is an alge-
braically closed field of characteristic zero.

First, we show that from a given prehomogeneous vector space, we can make
infinitely many prehomogeneous vector spaces which are essentially the same as the
original prehomogeneous vector space.

Let G be a reductive group, and V' a representation of G. Suppose that the
dimension of V is n. For an integer 0 < m < n, we consider two representations (Gx
GL(m), V®k™), (GXGL(n—m), V®k™ ™). Then generic GL(m)x-orbits of V,®k™
correspond bijectively with generic GL(n — m),-orbits of Vi, ® k™™™ because the
Grassmann variety of m planes in V' can be identified with the Grassmann variety of
n—m planes in V. Therefore, (GxGL(m), V®k™) is a prehomogeneous vector space
if and only if (G'x GL(n—m), V®k™"™) is a prehomogeneous vector space, and the
sets of generic orbits coincide. If two prehomogeneous vector spaces are related in
this way, we identify two such representations and consider the equivalence relation
determined by this identification. If the dimension of (G, V') is the smallest among
prehomogeneous vector spaces which are equivalent to (G, V), we say that (G,V)is
reduced. Also we identify two prehomogeneous vector spaces (G, V), (G, V) if the
images of G, G’ in GL(V) are the same.

Sato and Kimura proved in [59] that the following is the list of all the irreducible
reduced prehomogeneous vector spaces.

(1) G = GL(n) x H, V = M(n,n);, where H C GL(n) is any reductive subgroup
such that the k™ is an irreducible representation of H.

(2) G = GL(1) x GL(n), V = Sym?k".

(3) G = GL(1) x GL(2n), V = A2k2",

(4) G = GL(1) x GL(2), V = Sym®k2.

(5), (8), (7) G = GL(1) x GL(n), V = A3k™ where n = 6,7, 8.

(8) G = GL(3) x GL(2), V = Sym?k3 ® k2.

(9) G = GL(6) x GL(2), V = A2k® @ k2.

(10), (11) G = GL(n) x GL(5), V = k™ ® A2k where n = 3, 4.

(12) G = GL(3) x GL(3) x GL(2), V = k3 @ k3 ® k2.

(13) G = GSp(2n) x GL(2m), V = k?" @ k2™ where n > 2m > 2.

(14) G = GL(1) x GSp(6), V is a 14 dimensional representation of G.

(15) G = GO(n) x GL(m), V = k™ ® k™ where n > 3, 3>m>1.

(16), (17), (18) G = GSpin(7) x GL(n), V = spin; ® k™ where n = 1,2,3 and
spin, is the spin representation.

(19), (22) G = GSpin(n), V = spin,, where n = 9,11.

(20), (21) G = GSpin(10) x GL(n), V = halfspin;, ® k™ where halfspin, is the
halfspin representation and n = 2, 3.

(23), (24) G = GL(1) x GSpin(n), V = halfspin,, where n = 12, 14.

(25), (26) G = G2 x GL(n), V = k7 @ k™ where k7 is a representation of G and
n=1,2.

(27), (28) G = Es x GL(n), V = k*' ® k™ where k%" is a representation of Es
and n =1,2.

(29) G = GL(1) x E7, V is a 56 dimensional representation of E7

(30) G = GSp(2n) x GO(3), V = k2" ® k3.
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The cases (1)-(29) are what we call regular prehomogeneous vector spaces. For
the definition of the regularity, the reader should see [59]. Even though it does not
make any difference over an algebraically closed field, we have included the GL(1)
factor in (2)—(5) etc. and used groups like GSp(2n), GO(n) instead of Sp(2n), O(n)
etc., because it is more natural number theoretically. Most of these representa-
tions are what we call prehomogeneous vector spaces of parabolic type classified by
Rubenthaler in his thesis [52]. This is the kind of prehomogeneous vector spaces
which one can construct from parabolic subgroups of reductive groups as follows.

Let G be a reductive group, and P = MU a standard parabolic subgroup where
M is the Levi component and U is the unipotent radical. The reductive part
M acts on U by conjugation, and therefore on V = U/[U,U] also. Since V can
be considered as a vector space, we have a representation of a reductive group
M. Vinberg [75] proved that there is a Zariski open orbit. Therefore, if there
exists a relatively invariant polynomial, (M, V) is a prehomogeneous vector space
by choosing a relative invariant polynomial and is called a prehomogeneous vector
space of parabolic type.

For example, if we consider the Siegel parabolic subgroup P of GSp(2n), M =
GL(1) x GL(n) and V is the space of quadratic forms in n variables. If G is a type
C,, group etc., we say that (M,V) is of type C,, etc. Then (2) is C,, type, (3) is
Dy, type, (4) is G2 type, (5), (6), (7) are of Fg, E7, Eg types, (8) is Fy type, (9)
is Eq type, (10), (11) are E7, Eg types, (12) is Eg type, (13) is Cpym type, (14) is
F, type, (15) is B, D type, (16) is Fy type, (20), (23), (25), (27) are E7 type, (21),
(24), (26), (28) are Eg type (29) is Eg type. (1) is not always of parabolic type.
(17), (18) (19), (22), (25), (26) are not in Table 1 [52, pp. 35-38].

For the details on prehomogeneous vector spaces of parabolic type, the reader
should see [52].

§0.3 The global zeta function

In this section, we discuss the meromorphic continuation and the functional
equation of the zeta function, restricting ourselves to irreducible prehomogeneous
vector spaces (G, V, xv) for simplicity. The reader should see §3.1 for the general
definition of the zeta function. For the rest of this section, k is a number field.

For simplicity, we assume that there exists a one dimensional split torus 7y &
GL(1) in the center of G acting on V' by the ordinal multiplication by t® € GL(1)
and xy(t) = t¢ for t € Ty where eg, e > 0 are positive integers. Let A be a relative
invariant polynomial, and d the degree of A. Then |A(gz)| = |xv(g)|igi |A(z)|. Let
N be the dimension of V.

We assume that the representation G — GL(V)) is faithful. Therefore, in terms
of the list in §0.2, we are considering (G/T, V) where T is the kernel of the homo-
morphism G — GL(V). We fix a Haar measure dg on G,. Moreover, we assume
that dg is of the form dg = [], dg, where dg, is a Haar measure on Gy, for v € 9.
Let L C V;® be a Gi-invariant subset. For ® € #(V,) and a complex variable s,
we define

(0.3.1) 2u@5) = [ @ Y e,

GA/Gk z€L



