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Preface

In studying physiological systems bioscientists are continually faced with
the problem of providing descriptions of cause—effect relationships. This
task is usually carried out through the performance of stimulus-response
experiments. In the past, the design of such experiments has been ad hoc,

" incomplete, and certainly inefficient. Worse yet, bioscientists have failed to
take advantage of advances in fields directly related to their problems
(specxﬁcally, advances in the area of systems analysis). The raison d’étre of
this book is to rectify this deficiency by providing the physnologlst with
methodological tools that will be useful to him or her in everyday labora-
tory encounters with physiological systems.

The book was written so that it would be practical, useful, and up-to-
date. With this in mind, parts of it give step-by-step descriptions of
. systematic procedures to be followed in the laboratory. It is hoped that this
will increase the usefulness of the book to the average research physiologist
and, perhaps, reduce the need for in-depth knowledge of some of the
associated mathematics. Even though the material deals with state-of-the-
art techniques in systems and signal analysis, the mathematical level has
been kept low so as to be comprehensible to the average physiologist with
no extensive training in mathematics. To this end, mathematical rigor is
often sacrificed readily to intuitive simple arguments.

The main theme treated is the use of white-noise signals in identifying
physiological systems. The reason. for this emphasis is the plethora of
advantages that these signals provide. However, other, more traditional
methods are also covered—sine wave analysis, describing functions, etc. In
general, the state of the art in system identification is adapted to the
idiosyncrasies of physiological systems in a way that should be very useful
to graduate students and researchers grappling with physiological systems.
The book could also be used as a graduate-level textbook for courses in
systems physiology, bioengineering, and biosignal analysis.

Chapter 1 discusses the problem of systems analysis in physiology,
including the various philosophical as well as analytical approaches to it.

Chapter 2 discusses issues related to the analysis of physiological
signals. Thus, it forms the background necessary for the developments in
the - following chapters. Both the time-domain and frequency-domain
descriptions are covered, with emphasis on the statistical approach.
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Chapter 3 covers the traditional approaches to system identification in
physiology: gain and phase measurements, describing functions, spectral
analysis, and feedback systems. )

Chapter 4 introduces the Volterra~Wiener theory and related
methodology. It also includes an exposition on the interpretation of
Wiener kermnels, the extension of the theory to multi-input systems, and a
comparative discussion of other. approaches. '

' Chapter 5 presents certain practical variants of the white-noise
method (quasiwhite test signals) and their applicability. It also presents
various methods of designing noise generators for use in experiments and
the tests necessary to assess their suitability for system identification.

Chapter 6 discusses various computational approaches to the efficient
estimation of the system kernels. Both time-domain and frequency-domain
(fast Fourier transform) computer techniques are presented.

Chapter 7 discusses the various sources of error finherent in the
identification process and how they may be minimized. These include
effects of record length, system noise, bandwidth, system nonlinearity, etc.

Chapter 8 discusses the preliminary tests and considerations prior to
the execution of the identification experiment, e.g., system stationarity,
response drift removal, system memory, etc.

Chapter 9 concerns itself with the synthesis problem, i.e., how to
identify interconnections between linear and nonlinear subsystems, e.g.,
cascade, feedback, etc. ; i

Chapter 10 presents several applications of the white-noise method to
physiological systems. These include the catfish retina, the fly visual
system, the semicircular canal of the guitarfish, the abdominal ganglion of
the seahare, and the lobster cardiac ganglion.

Chapter 11 covers various classes of physiological systems that require
special treatment, e.g., neural systems with point process (action poten-
tials) inputs and outputs, nonstationary systems, systems with spatio-
temporal inputs, etc. ' )

The final chapter is an exposition in dialogue form on specific aspects
of the identification process. These points have often been a matter of
lively discussion between us and our colleagues.
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The Problem of Sys‘tem Identification
‘in Physiology

Words ought to be a little wild
for they are the assault of
thoughts on the unthinking.

John Maynard Keyne: ‘

Introduction

Even though the epistemology of the life sciences has a distinctly hierar-

- chical organization—extending from the subcellular level to the
behavioral—the main thrust of research up to now has focused on each
particular level of this organization, e.g., at the molecular, cellular, or
behavioral level. The relationships and interdependences between the

- various levels have been relatively neglected. This latter endeavor belongs
to the realm of systems analysis. In addition, a great part of the
methodology employed within each particular level (and being equally
applicable to all of them) belongs to systems analysis. Thus, systems analy-
sis, as a methodological tool, has both a “vertical” and a “horizontal”
component in the hierarchy of physiological systems.

The decade of the sixties saw massive application of engineering,
mathematical, and computer techniques to problems in the life sciences;
however, the significant results produced were far below expectations,
given the magnitude of this effort. Accordingly, the early seventies jus-
tifiably witnessed a developing skepticism as to the usefulness of this
large-scale invasion of the methodology of the physical sciences into
biology and medicine. In spite, however, of any sins of overenthusiasm
committed during the sixties, the inescapable conclusion was reached—and
emphasized—that living systems, including the human body, are such
complex collections of dynamically interacting components that their
efficient study could not be accomplished in piecemeal fashion, but
required their treatment as an organic whole; this necessitated the
employment of sophisticated systems analysis techniques. .

1



.2 é'hapter 1

1.1." The Problem of Systems Analysis in Physiology

In talking about physiological systems we will employ repeatedly the
concepts of system, element, and signal.

A system is a set of connected and interacting ‘‘elements,” conceived
as a whole, and intended to achieve a certain objective. For example, the
retina, at a certain level of approach, can be conceived as a set of connected
and interacting neurons whose objective is-to translate light patterns cast
onto it into the matrix of ganglion responses that are sent to the brain.

An element is a conceptual entity that exhibits some measurable
dimensions. The mathematical representation of such a measure is realized
through a “variable.” Continuing on the same example as before, a neuron
is an element and its electrical activity is the variable. '

- A signal is the mathematical description of some quantity changing in
time, e.g., in the example of the retina, the time history of a neuron
potential is a signal. The <hange in the measurement of an element within a
system may proclaim.a change in the measure of another element of the
system if and only if an interconnection exists between these two elements,
e.g., the existence of a synaptic (or other) connection between two neurons.
In this sense, interconnection between two elements of a system can be
considered as the “path” that allows the flow of a “physiological change in
time,” i.e., a signal, from one element to another in the system.

It is evident that a system always has interconnections with elements
(or systems) not belonging to itself. The possible signals ““flowing” through
such “boundary interconnections’’ are the so-called “inputs” and ‘“‘out-
puts” of the system, according to the corresponding direction of flow of the
signal at each ‘“‘boundary interconnection”: When the “flow” is directed
inward to the system the “‘signal” is called “input” (stimulus); if the “flow”
is directed outward it is called “‘output” (response).

According to this conceptualization of a system we can represent it as
shown in Fig. 1.1. In general, the system will have many inputs (and
therefore stimuli) and many outputs (i.e., possible recordable responses) in
most cases. From the cause—effect point of view, however, and with regard
to describing the transformations (by the system) of the stimuli x;(¢) into
the responses y;(f), we may consider each response separately. That is, we
have

Yi(£) = F[x1(t), x2(¢), . . ., xa(1)] (1.1)

i.e., any of the responses could be a function of (may be due to) all the.
inputs. Following again the example of the retina mentioned above, the
response of the ganglion cell can conceivably be described in terms of all
the inputs impinging upon the ‘“retina’ (light, temperature, circulatory
effects, other neuronal inputs from outside the retina, etc.), and so could all
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x; (1) —> >y, (1)
stimuti %2 system [ Y2 responses
xn(t)—i > ym (1)

Fig. 1.1. Multi-input-multi-output system.

the other retinal neural responses. Alternatively, we could, of course,
describe the ganglion responses in terms of the photoreceptor responses
plus all these other inputs. However, the photoreceptor responses can in
turn be described in terms of these retinal inputs (light, temperature, etc.);
therefore, the ganglion responses are describable solely in terms of these
inputs to the “‘retinal system.” This should clarify our conceptualization of
a system in terms of Eq. (1.1). .

In the study of a system we seek to identify the functional trans- -
formation F depicted in Eq. (1.1). Experimentally this entails the
measurement of all extrinsic variables (inputs) affecting the system (e.g., in
the case of the retina, light, temperature, blood flow, etc.). Clearly, this is
infeasible or extremely difficult in practice. Therefore, what is done is to
simply ignore most of the inputs and concentrate on the few major ones
with respect to their effect on each particular response. The relative effect
of the ignored inputs can often be assessed approximately. These “minor”
inputs are termed noise and are simply ignored in practice.

The first motivation in the study of a physiological system is our
concern with the system’s “expected’’ behavior, i.e., response to a known
excitation. The justification of such a concern is something that the authors
consider self-evident. .

For example, in studying the retina the researcher will be concerned.
with the behavior of the retinal neurons and other retlnal elements in such

" a way that he or she can predict their responses under normal or abnorial
physiological operation. -

The above comments apply quite generally to the analysis of systems.
Our concern however is with physiological systems and the special prob-
lems associated with their analysis. Relative to physical and artificial sys-
tems, living systems are “‘great unknowns’’ to us. We are relatively ignorant
of their function, structure, and modes of operations. Part of our problem
is due to the fact that, experimentally, we are usually unable to break them
up into their fundamental components and study them separately and/or
while these are interacting. Thus, we are called upon, from the beginning of
our efforts, to understand and describe phenomena that are quite complex.
This forces us to take a phenomenological approach at the start of the
study, which leads us directly and logically to the functional identification
problem for the system—as posed in the next section. In short, this is the
task of describing, as completely as possible, the system response to any
given stimulus, i.e., identifying the function of the system in' processing
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physiological signals from its inputs to its outputs. In conclusion, our
relative ignorance about the workings of a physiological system is why this
task—functional identification—is a first objective in approaching
physiological systems through the systems analysis methodology.

The next question concerns the special conditions—experimental and
other—that have to be dealt with in carrying out the functional iden-
tification task on physiological systems, i.e., the constraints and idiosyn-
cracies of such systems as a set that will be encountered in practice (in
experimental situations) during the identification process. This is discussed
in the next sections.

1.2. Functional and Structural Identification of Physiological
Systems

Bound by both inductive and deductive reasoning in our logic, we
approach the study of physiological systems in terms of cause—effect rela-
tionShips. These relationships are often manifested as stlmulus—response
relationships, where the stimulus 1is either applied externally by the
experimenter or is simply observed as it occurs naturally during the opera-
tion of the physiological system.

Given this. conceptualization in terms of stimulus-response relation-
ships, two questions face the researcher immediately. The- first is “What
does the system do? That is, how does the system respond to various
stimuli?”” To answer this question in the absence of detailed information
about the system’s inner strucfure, we must perform stimulus-response
experiments. From the results of these experiments we aim to deduce a
complete description of the system, which will allow us to describe its
response to each arbitrary stimulus. This task is the so-called functional
identification of the system.

A natural question, following the functional identification question
and a logical sequel to it, is ‘““‘How does the system do this? That is, how are
the various components of the system interconnected and how do they
interact so as to produce the observed responses?’’ Obviously, this ques-
tion concerns the structure of the system, and we, therefore, term it
structural identification of the system. In practice, it is usually carried out by -
performing anatomy, that is, breaking open the “black box” and looking
inside at the various components. Another way is to deveiop the ability to
measure new system state variables, i.e., responses from points within the
black box. However, this may prove to be a difficult task in practice for
certain biological systems, for example, aggregates of neurons.

The system identification objectives, as outlined above, imply, up to a
point, a ‘“black box” approach, because they aim at the determination of



System Identification in Physlblogy 5 ‘ 5

the transfer characteristics at one approach level and largely ignore issues
at underlying levels. For example, in studying a neuron network we would
aim at the description of the transformation of incoming spike trains
and/or continuous potentials into outgoing spike-trains and/or continuous
potentials while ignoring to a great extent the underlying physicochemical,
molecular transformations. This is not a “limitation,”” as sometimes is
mistakenly thought, but a necessary methodological feature. First, the
analysis of a system into its “‘ultimate” components is a necessary but not a
sufficient step for understanding thoroughly its operation and role; it may,
in fact, be illusory to think that the smaller the pieces into which a system is
dissected the better we will understand. it. Second, in practice any inves- .
tigator selects a certain approach level and deals with variables therein as
with elementary quantities, as dictated by practical considerations (ex-
" perimental observability) as well as conceptual ones. In any case, for any
choice of an approach level, there would be an infinite number of more
basic ones underlying it; description of the system’s functioning at these
lower levels may often becloud the issues involved at the higher levels of
functioning by simply deflecting attention from these latter ones. Third,
and most important, the system identification approach is compatible with
our desire (this desire is clearly motivated again by the cause—effect nature
of our logic) to explain higher-level functioning through descriptions at
lower levels; in fact, it is a natural way to achieve it and the ones employed
in practice anyway. Let us explain this statement: The system identification
approach results in the determination of the system transfer characteristics
without specifying its internal topological structure. However, as the
experimental ability is developed to measure more “‘state variables,”” some
heretofore “hidden” in the “black box,” the system is broken up into
smaller subsystems whose organization reflects more and more closely its
topological structure. In spite of current common belief (more accurately,
misconception), it should be stressed that no stimulus-response experiment
can reveal the “internal structure” of a system without making assumptions
about certain alternative configurations; that is, a stimulus-response
experiment could conceivably, in certain cases, distinguish between two or
more possible structural configurations but usually cannot determine pre-
cisely the system structure without a priori-information about it. The task
of decomposing a system into smaller component subsystems can be
accomplished through the combination (and interplay) of functional iden-
tification (through stimulus-response experiments) and structural iden-
tification (through histology and anatomy).

To concretize the above general comments, let us consider a specific
example, as it would be encountered in experimental research: the study
and modeling of the vertebrate retina. The actual model to be described °
below is not necessarily accurate (even though it might be plausible), but.it



