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L NbRMAL GLOBIN BIOSYNTHESIS

Human hemoglobins are composed of tetramers of globin chains and four
heme molecules [1-3]. Two different globin chains are present in each of the
human hemoglobins—normal adult hemoglobin is composed of two a- and
two B-globin subunits. Hemoglobin A,, a minor constituent, contains two o--
and two 8-globin chains (Fig. 1). Fetal hemoglobin, the major hemoglobin
type present during fetal life, is composed of two a- and two +y-chains.
Structural analysis at the globin level indicates that «- and non-a-globin
genes diverged at an early stage in evolution. The yand B-globin chains are

1 © 1985 Alan R. Liss, Inc.
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Fig. 1. Human hemoglobins. The a-like and (3-like genes are shown. The embrybnic, fetal,
and adult hemoglobins are also indicated. The distances between the f-like genes. are in
kilobases.

much more similar in structure than the a- and B-chains. The 8- and B-chains
differ by only 10 of 141 amino acids.

In addition to adult and fetal hemoglobins, there are several embryonic
hemoglobins which are present during embryonic and fetal life (Fig..1).
These include the Gower hemoglobins, composed of either ¢- and {-embry~
onic globin chains (Gower 1), or e-and a-chains (Gower 2).

The details of the biosynthesis of all of the globin chains are now available
by the cloning and sequencing of each of the human globin genes. The results
have shown that globin biosynthesis is more complex than was previously
thought. Intervening sequences (IVS) are present in the globin genes and are
transcribed into nuclear RNA; although the function of these sequences is
not yet clear, they have been preserved through evolution at specific locations
within each of the globin genes, and presumably have functional significance.

A. Globin Genes

The structure and organization of all of the functional human globm genes
are now known [4, 5] (Figs. 1, 2). Initial studies using restriction analysis of
cellular DNA led to the conclusion that two -, one §-, and one (-globin
genw were present on a single stretch of DNA [1, 6-9]. These experiments
showed that the relative distance between the y-genes was approximately 2.5 .
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Fig. 2. Globin biosynthesis. The globin gene with its 5" and 3’ flanking sequences is
shown.The clear areas of the gene are the coding sequences and the hatched areas the IVS.
Coding regions 1, 2, and 3 are transcribed into RNA together with the IVS (sawtoothed
segment). The IVS are ther removed by splicing, and the coding regions of RNA are religated
to form mature globin mRNA. The lowest line shows globin mRNA being translated into
globin on ribosomes (circles).

kilobases (kb), the distance between the - and é-genes was approximately 15
kb, and between the §- and B-genes approximately 5.5 kb (Fig. 1). Restric-
tion analysis also indicated that each of the y-, 8-, and 3-genes contained
IVS. The presence of two linked c-globin genes was also first shown by
restriction analysis [10]. i
Definitive analysis of the structure and organization of the human globin
genes resulted from the cloning and nucleotide sequencing of each of these
genes and their flanking sequences [11-16]. Clones containing each of these
genes have been isolated, and overlapping clones have been identified which
permit the organization of the e-, y-, 8-, and B-genes with respect to each
other [4] (Fig. 1). Similarly, overlapping clones have indicated the organiza-
tion of the a-globin genes [4]. Here, two structural a-genes are located 3’ to

" a pseudo-a-gene which in turn is located 3’ to two embryonic {-genes, one

of which is active and one of which is inactive (Fig. 1).

Each of the globin genes contains a “cap” site approximately 50-60
nucleotides 5’ to the initiating codon, has approximately 140-146 coding
sequences (codons) within it, and has a polyadenylation (poly-A) signal,

r
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AATAAA, within a 3’ untranslated region (Fig. 3). Each of the globin genes
also contains two IVS at precisely the same relative positions. In the adult -
globin gene, a small IVS (IVS 1) is present between codons 30 and 31, and a
large IVS (IVS 2) between codons 104 and 105 [4]. The structure and size of
the IVS in different globin genes is significantly different. For example, IVS
1 of the B-globin gene contains only 120 nucleotides, while IVS 2 contains
close to 900 nucleotides. Additionally, there is greater divergence in the
structure of IVS in certain of the globin genes than there is in their coding
sequences. For example, the 8- and B-globin genes, which differ in only 10
of 141 amino acids and have extraordinary. stretches of homology within
coding regions, have almost no homology within their respective IVS 2. The
reasons for this divergence in IVS with conservation of structural coding
sequence are unknown.

There are several regions S’ to the $-globin gene which appear to be
important for optimal function in initiation of globin mRNA transcription
[15-17] (Fig. 3). One region, approximately 90 nucieotides 5’ to the cap site
( -90) to approximately 80 nucleotides 5’ to the cap site, appears to be
important for optimal transcnpuon as shown by studies of the rabbit globin
gene [17]. Similarly, another region approximately 50-60 nucleotides 5’ to
the cap site (—50 and —60), the so-called CAAT box, appears to be impor-
tant in optimal function. This region is so named since the nucleotide se-
quence, CAAT, is usually present in this region. A third region, the so-called
TATA or ATA box (the Goldberg-Hogness box), is at —30 to —40 5’ to the
[3-geney and is again required for optimal transcription of this gene. These
three 5' flanking sequences are all considered to be “promoter” sequences,
ungottam'm the regulation of transcription of the globin genes. Single base

" ‘changes in each of these regions are associated with decreased globin mRNA

tIanscnpuon There is significant heterogeneity in the sequences 5" to the

—WW Lé h B SN ZW—
CCC CAAT ATAA AG /GlGGT AGGG A/Gzé \TAA

Fig. 3. Key nucleotides within and surrounding globin genes. The critieal nucleotides within
and surroundifig the B-globin gene are shown. In the region 5’ to the gene (single horizontal
line to the left), three critical regions are present: A CCC sd]uence 86-88 nucleotides 5’ to
the gene, a CAAT sequence, and an ATAA sequence. A single base change in the middie c
of the CCC sequence 1 to B+ -thalassemia (Table I). Changes in the ATAA sequence also
lead to B*-thalassemia (Table I). Thei#lck areas show the 5! and 3’ untranslated reglons
The sequence responsible for po!yacfe’ﬁylauon ATAA, is in lﬁe 3’ untranslated region. The
conserved mygleotides at the 5’ and 3’ ends of IVS 1and IV§ 2 are shown, and single chunges
can cause (3°-thalassemia (Table I).
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cap site in different globin genes; these sequences differ in the 8-, 8-, -, €-,
¢-, and - genes.

Nucleotide sequences within and surrounding the IVS of different globin
genes show remarkable homology and conservation at their 5’ and 3’ ends
[18, 19]. At the 5’ end of the IVS of all of the globin genes, as in most other
genes studied to date, there is an invariant GT dinucleotide. In many cases,
additional A and G residues adjacent to this GT dinucleotide are present, and
the sequence AGGT provides a “stronger consensus” sequence at the 5’
splice junction [19]. An invariant AG dinucleotide is present at the 3’ end of
all IVS in the globin genes. This dinucleotide is usually preceded by 12-15
pyrimidines which appear to strengthen this site as the 3’ splice junction. As
will be discussed later, changes in a single nucleotide of the invariant
dinucleotides, either 5’ or 3’ extremities of IVS, lead to dramatic alterations
in the ability to form mature globin mRNAs.

Transcription of the human globin genes begins at the cap site and includes
the three coding regions (exons) and the two IVS past the 3’ untranslated
region of these genes, and ends 3’ at the so-called poly-A “addition” site
(Fig. 2). Studies both in intact cells and in cell-free systems show that there
is modification of the cap by unusual methylated bases at the 5’ end, and
poly-A addition at the 3’ end of these primary RNA transcripts soon after
transcription.

In addition to a 5’ cap structure and 3 poly-A addition, the formation of
mature human globin mRNA requxres the accurate removal of IVS present -~
in the primary transcript. This is presumed to.be an enzymatic process
generally known as RNA processing, and in’ this process, the IVS are -
accurately “spliced out” (Fig. 2). There is some overlap in the hucleotide
sequences at the 5’ and 3’ ends of IVS, which allows some ambiguity in the
precise nucleotides spliced out, while still ensuring retention of the proper
coding sequence continuity required in the exons. The role-of secondary
structure within or surrounding IVS, and the precise )&rﬂcnpatlon of en-
Zymes, other proteins, or the RNA itself in the process of splicing, is
completely unknown, and represents an area of active investigation.- The
order in which IVS are spliced out and whether this order is of signjficance
. is also not clear, although it is obvious that both IVS must be coftipletely
spliced out to yroduce mature messenger RNA.

Several methods are available for analyzing the RNA produoed either in
intact cells or by globm genes transferred into cells [20-23]. Radioactively
labelled DNA probes can be used to define RNA species present. The hybrid
formed between the radioaetively cloned DNA and the RNA can be analyzed
using the enzyme S1. This enzyme cleaves single-stranded DNA or RNA
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but not double-stranded nucleic acids. The size of the protected labeled DNA
fragments defines the regions represented in RNA. The size of RNA precur-
. sors or mature RNA products can be identified accurately by so-called
.Northern blot analysis [23]. In this analysis, agarose gels containing the RNA’
are used to separate RNA components on the basis of size. The RNA is
transferred from gels to nitrocellulose filters, and the filters hybridized to
specific DNA probes which identify globin gene-specific fragments. This
methodology can identify both the size and the amount of RNAs in cells.
Newly transcribed RNAs can be identified by radioactively labeling the
newly synthesized RNA and using unlabeled cloned DNA probes for their
analysis [20]. ¢

B. Globin mRNA Translation

Globin mRNA precursors are spliced in the nucleus to produce mature
globin mRNA. This mature globin mRNA is then transported to the cyto-
plasm. In the cytoplasm, the mRNA becomes associated with polyribosomes.
In the presence of appropriate tRNAs, amino acids, and enzymes, globin
chains are synthesized on the polyribosome-mRNA template. A variety of
protein factors required for translation have recently been identified, and are
necessary for normal initiation, elongation, and termination of translation of
globin chains in the cytoplasm. Individual - and B-globin mRNAs are
associated: with - different-sized polysomes, and the a-'and B-globin chains
produced initially combine to form «f-dimers which rapidly acquire heme
groups. The af-dimers then associate to form stable hemoglobin tetramers.
Individual o- and B-globins are mot as stable as the mixed normal a,f,-

in tetramers. Excess a-globin chains tend to aggregate and become
insoluble and in high enough concentrations will precipitate. 8-Globin sub-
units unassociated with o-globin subunits combine to form a S4-tetramer
known as hemoglobin H (Hgb H), which is less stable than normal hemo-
globin. ) ]

Il. THE B-THALASSEMIAS
_ A. Clinical Variants

The B-thalassemias are due to decreased or absent $-globin biosynthesis
leading to decreased or absent amounts of hemoglobin A (Hgb A) [1-3].
Heterozygotes for $-thalassemia inherit a defective 8-globin gene from only
. “one parent, while homozygotes inherit defective 3-globin genes from both
" “parents. Although there are many different G-thalassemia genes, there are
basically two types: those associated with the production of some $-globin,
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called B*-thalassemia genes, and those which produce no S3-globin, called
3°-thalassemia genes. It is now known from a variety of studies that individ-
uals homozygous for 8-thalassemia can have two 8- or two °-thalassemia
genes, or one B*-and one B°-thalassemia genes. When two [3°-thalassemia
genes are present, the patient has §°-thalassemia, and no B-globin ‘is pro-
duced. When at least one 8 *-thalassemia gene is present, then the individual
-continues to produce small amounts of 8-globin, and has the B*-thalassemia_
phenotype. Many individuals have now been identified who are heterozygous
for both 3*- and B°-thalassemia. Different 3*-thalassemia genes have dif-
ferent outputs of 8-globin mRNA and, consequently, of 8-globin. For exam-
ple, it is now known that certain 3*-thalassemia genes in blacks are associated
with significantly more 8-globin production than other 8*-thalassemia genes
present in Mediterranean individuals and those of other ethnic groups. Thus,
black individuals with homozygous §*-thalassemia are usually less severely
affected than those in other ethnic groups. Although studies, to date, are
limited, there appears to be no significant correlation between the severity of
B*-thalassemia in Mediterranean individuals who are homozygous for two
B -thalassemia genes, and those heterozygous for.both one $*-and one 8°-
thalassemia genes. This presumably is due to the fact that all or most of the
B*-thalassemia genes in individuals of Mediterranean® extraction manifest -
little 3-globin synthesis, and not enough Hgb A is produced by most variant
ﬁ*thalassemmgenestougmﬁmnﬂyahtdlechmcalswquymﬂm
different individuals.

While the fundamental defect in S-thalassemia:is due to decreased or
absent B-globin synthesis, the pathogenesis of -thalassemia is largely due to
the continued normal production of ¢-globin chains [1-3]. The large amounts
of a-globin chains produced in the bone marrow have no significant amounts
of non-a-chains with which to combine to form stable hemoglobms Because
of this' situation a-globin chains aggregate and precipitate in cells in the
earliest erythroid precursors in the bone marrow. These a-chains disrupt the
normal metabolism of nucleated red cells and cause their premature destruc-
tion. Thus, although the production of erythroid cells in the bone marrow in
B-thalaessemia is remarkably increased, the number of functional erythroid
precursors which mature normally and produce hemoglobin is markedly
diminished. In addition, cells that do produce enough Hgb A and Hgb F td
survive and reach the peripheral blood also contain excess a-globin. This
excess a-globin material in the circulating erythroid cells 4
destruction of these cells by the spleen and othes- phagocyuc organs.

Different patients with ($-thalassemia also vary in their fetal hemoglobm
production. The production of y-globin chains and fetal hemoglobin has two

~w
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effects. First, increased y-chains leads to increased Hgb F, producing more
viable oxygen-carrying red cells. Second, the increased y-globin production
leads to less accumulation of excess a-globin chains, decreasing the severity
of the thalassemia. There is variation in the extent of hemoglobin F produc-
tion in different patients with 3-thalassemia in different ethnic groups, which
appears to be largely independent of the type of $-thalassemia genes present
in these patients. The precise relationship between the genetic factors regu-
lating fetal hemoglobin production and those involved in altering B-globin
production in thalassemia has not yet been defined. ,

B. Globin Biosynthesis

Globin biosynthesis in thalassemia is measured by using a radioactive
amino acid to quantify the relative amounts of a- and 8-globin chains pro-
duced in reticulocytes in peripheral blood, nucleated erythroid cells, and
reticulocytes in bone marrow. Many studies over the past two decades have
revealed that, while normally there is relatively balanced o- and B-globin
synthesis in both nucleated red cells and reticulocytes, in most cases of
homozygous B-thalassemia, there is a decrease in the amount of (-globin
synthesis as compared to a-globin synthesis. In heterozygous $-thalassemia,
there is also a reduced relative amount of 3-globin synthesized as compared
to a-globin in peripheral blood reticulocytes. By contrast, in bone marrow
cells, there are relatively equal amounts of synthesized o- and -globins in
heterozygotes. ‘

C. Globin mRNA

Several studies have determined that in 3 *-thalassemia there is a reduction
in the amount of normal $-globin mRNA. Two different methods have been
used to determine -globin mRNA. Globin mRNA has been isolated from
reticulocytes and bone marrow cells and translated in vitro using cell-free
systems. Using a variety of cell-free systems, ranging from wheat germ to
rabbit retculocytes, there is a ‘decreased amount of B-globin as compared to
o-globin biosynthesis using mRNA from g-thalassemia homozygotes, and to
a lesser extent from f-thalassemia heterozygotes as well. RNA from individ-
uals homozygous for B°-thalassemia produce no B-globin. To determine
whether 3-globin mRNA in $-thalassemia is due to a decreased amount of
normal $-globin mRNA or to a defective $-globin mRNA, complementary
DNA (cDNA) was synthesized which hybridized specifically to (-globin
mRNA, and was used to quantify the amount of B-globin mRNA in different
individuals with 3-thalassemia. In individuals with B87*-thalassemia, it was
shown, using cDNA hybridization, that there was a 3-10-fold decrease in the
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amount of B-globin mRNA sequences present in the reticulocytes and bone
marrow precursors of these patients. In 3°-thalassemia, there was heteroge-
neity in the results obtained by cDNA hybridization. In some individuals
with 3°-thalassemia, there were markedly diminished amounts of 3-globin
mRNA consistent with the absence of 3-globin mRNA sequence. By contrast,
in other individuals with 3°-thalassemia, there were somewhat diminished
complements of 3-globin mRNA sequences, but B-globin mRNA sequences
were present. These latter results indicated that in many individuals with 3°-
thalassemia, the defects were due to abnormal B-globin mRNAs which
resulted in the absence of ($-globin prcduction. These preliminary assump-
tions, based on analyses of 3-globin mRNA by cDNA hybridizations, have
been subsequently borne out by isolation of abnormal 3-globin genes in 3°-
thalassemia, and characterization of the abnormal 3-globin mRNAs produced
by these genes.

D. Gene Defects in the Thalassemias

1. Restriction enzyme analysis. Two types of analyses—restriction enzyme
studies [6-10] and globin gene cloning [11-14]—have led to the detection of
more than 30 different types' of gene defects in the B-thalassemias. Restriction
enzyme analysis involves the isolation of high molecular weight DNA from
peripheral blood white cells, or other of the patient’s tissue material. Cleav-
age of the DNA is then performed using one of many available restriction
enzymes. These restriction enzymes cut specific nucleotide sequences, and,
thus, lead to an ordered array of DNA fragments. The restricted cellular
DNA fragments are separated by agarose gel electropnoresis, and then are
transferred to nitrocellulose filters. The particular DNA fragments which
contain the B-globin genes are identified by the use of a highly radioactive
DNA probe prepared by using either cDNA or cloned DNA fragments that
have been radioactively labeled. The filters are hybridized to the radioac-
tively labeled DNA, and after washing are subjected to radioautography.
Specific bands of DNA representing the 3-globin genes are seen depending
on the particular restriction enzyine used and the specific fragment of DNA
utilized as probe.

Restriction enzyme analysis has been used to detect a few thalassemia
mutations: deletions of parts of the B-globin gene and single nucieotide
defects. Deletion of the 3’ end of the B-globin gene occurs in a subset of
Indian patients with 3°-thalassemia [24, 25]. Several different 8-thalassemia
genes caused by single nucleotide changes have also been detected using
restriction enzyme analysis. The first of these involved the use of the enzyme
Hph I. which recognizes the nucleotide sequence present at the 5’ end of (8-
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