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Preface

This Study Guide is designed to be used in conjunction with Applied Calculus
by Bernard Kolman and Charles G. Denlinger. It contains solutions to nearly one-
half the odd-numbered exercises in that textbook. The techniques used in the
solutions here are identical to those used in the text; thus, this Study Guide
reinforces the material presented. However, since the textbook exercises are not
retyped herein, a copy of the textbook should be available whenever this guide
is used.
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1: Functions 1

1 Functions

Key Ideas for Review

*

A function is a rule or formula that determines the unique value of
one variable (the dependent variable) once the value of another
variable (the independent variable) has been specified.

A single equation is not the only way to define a function.
Sometimes a function is defined by a table, chart, or by several
equations, in a piecewise definition.

The domain of a function consists of the set of all real numbers at
which the function is defined and yields a real number.

The graph of the function f is the graph of the equation y = f(x).

The vertical line test: if any vertical line cuts a curve at more than
one point, then the curve is not the graph of any function of x.

(fog) (x) = f(g(x)).
In business and economics problems, the cost, revenue, and profit
functions occur frequently; moreover, P(x) = R(x) - C(x). The

"break-even" point occurs where R(x) = C(x).

The slope of a nonvertical line is given by

_ (y2-y1)
m= (x2-x1)

where Pyj(x 1,y 1) and Pp(x 5,y ) are any two distinct points on the
line.

A vertical line has no slope.

If the slope m is positive, then y increases as x increases (the line

rises from left to right); if m is negative, then y decreases as x
increases (the line falls from left to right).
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The slope-intercept form of a line is y = mx + b.

If two nonvertical lines have the same slope, then they are parallel.

Conversely, if two nonvertical lines are parallel, then they have the
same slope.

The point-slope form of a line that passes through the point
P(xq1,y1)and hasslopem isy-y{=m(x-x1 ).

The slope of a line parallel to the x-axis is zero.

The equation of a vertical line through (a,b) is x = a. The equation
of a horizontal line through (a,b) is y = b.

The equation of a straight line can be written as Ax + By = C, where
A and B are not both zero. Conversely, the graph of the linear
equation Ax + By = C (A and B not both zero) is a straight line.

Two lines are parallel or identical or intersect at only one point.

When a principal P is invested for t years at interest rate r, the
interest earned is I = Prt and the value of the investment after t
years is

S=P+I=P(1 + rt).

If a merchant marks up an item that costs him C by the rate r, then
the selling price is
S=C+ rC= C(1 +1r).

Similarly, if an item with list price L is discounted at the rate r, then
the selling price is

S=L-rL=L1-r).

If an item with net cost C is depreciated linearly over n years, then
the annual depreciation is D = ¢/n. After t years the total
accumulated depreciation is Dt and the book value of the item is
V(t) = V(0) - Dt.



Given a set of n data points (x 1,y 1), (X2,¥2),...(Xn, Yn), the line
of best fit obtained by the method of least squares can be found by

1: Functions

solving the system (16) of Section 1.4 for the slope m and the

y-intercept b.

The graph of a second degree function f(x) = ax2 + bx + cis a
parabola, opening upward if a > 0 and downward if a < 0. The
vertex has x-coordinate x = -b/2a. The axis of symmetry is the

vertical line through the vertex.

3

The parabola y = ax? + bx + ¢ has either a highest point (if a < 0) or a

lowest point (if a > 0). This is important when we are looking for
the largest or smallest value of a quadratic function.

The point of intersection of the graphs of two equations can be

found algebraically by solving the two equations simultaneously.

Exercise Set 1.1, (Page 8)

3.

2 +1
Given the function F(x) = x3x 1

(a) To find F(1) we replace x by 1. Thus

1% +1 2
F) =3m-1 =2=1

(b) To find F(-2) we replace x by -2. Thus

(-22+1 5 -5
K2 =3p-1-7°7

(c) To find F(4), we replace x by 4. Thus

@2 +1 17
3@-1 11

F4) =

(d) To find F(0), we replace x by 0. Thus

(0)2 +1 1
30)-1 —-1-7}

F(0) =

(e) To find F(a), we replace x by a. Thus
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@2 +1 a2 +1

F(a) = 3(@)-1 ~ 3a-1

(f) To find F(a - 2), we replace x by a - 2. Thus

@a-2)2 +1 a2-4a+4+1 a2-4a+5

Fa-2) =31 =" 3a-6-1 - 3a-7

(g)To find F(-x), we replace x by -x Thus

x)2 +1 x2 +1

FCX) =359-T = 3x-1

(h)To find F(x2 ), we replace x by x2 Thus

x2)2 +1 x4 +1

2y = _

Fx*) =360-1 “32-1

. 1 1 B 3x-1
(i) Fx) ™ x2 +1 x2+1

3x-1

Given the formula relating Fahrenheit temperature F to Celsius
temperature C

9
F=§C+32

(a) To write C as a function of F, we solve the formula for C.

9
F-32=

gC

or
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(b) To find the Celsius equivalents of Fahrenheit temperatures, we
substitute in the formula of part (a)

5 5
() IfF=4°thenC= §(4 -32) = §(-28) =-15.6°

5
(ii) If F = 0°, then C =§(O -32) =-17.8°

5 5
(iii) If F = -10°, then C = §(-10 -32) = §(-42) =-23.3°
. 5
(iv) If F = 32°, then C = 5(32 -32)=0°
5 5
(v) If F=98.6°, then C = §(98.6 -32) = §(66.6) =37°

5 5
(vi) If F = 212°, then C = §(212 -32) = §(180) =100°

Since a negative number has no real square root, we must have

x - 120 for x to be in the domain of h(x) = Yx - 1. Thus, the domain
of h consists of all real numbers which are greater than or equal to 1.

We have f(x) = (x - 2)/(x + 1). Since division by zero is undefined,
f(-1) is undefined. Thus, the domain of f consists of all real
numbers except -1.

The graph of f(x) = 2x2 + 3. is the graph of y = 2x2 + 3. We choose
values of x arbitrarily and calculate the corresponding values of y.
The results are

y=2x2+3

3-2-1 ' 123

These points are plotted to obtain the graph.
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1 1
The graph of f(x) = is the graph of y = . We choose values of x

arbitrarily and calculate the corresponding values for y. We note
that x=0 is not in the domain of this function, so we must exclude
this from our table.

1
y=5 T
24
1+
X 1y
-2 -1/2 t } t } } } x
-1 -1 -1 1 2
-1/2 | -2 T
1/2 | 2 3
1 1
2 1/2 T

These points are plotted to obtain the graph.

Exercise Set 1.2, (Page 19)

1.

The graph of f(x) = Ix| + 1 is the graph of y =Ix| + 1, which may also
be written as

x+1 ifx=0
y:
x+1 ifx<0

We sketch the graph in two stages. If x 2 0, we have

x L 0 1 2 3
f)=x+1 | 1 2 3 4

which is a linear graph in the first quadrant. If x< 0, we have

X L -1 -2 -3
f)=-x+1 | 2 3 4

which is a linear graph in the second quadrant. We sketch the two
stages together as



The graph of

x+2 ifx<0

y=f(x) =
x-2 ifx20

is obtained in two stages.
If x<0, we have
X | -4 -3 2 -1
y=x+2 | 2 0 1
and if x=0, we have
X H 0 1 2 3
y=x2 | 2 -1 0 1

Plotting these points gives the graph

1: Functions
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Given f(x) = xsj and g(x) = x2 + 2:
(a) To find (f- g)(2) = f(g(2)), we first find g(2).

g2)=2)2+2=6

3
Thus f(g(2)) = f(6) = 1=

Ul w

(b) Tofind (g-£)(2) = g(f(2)), we first find £(2).

Thus g(f(2)) = g(3) = 3)2 +2 =11

(c) To find (f - g)(x) = f(g(x)), we substitute g(x) for every occurrence
of x in the rule for f. Thus

3
Ko =tar -1 2+1

(d) To find (g H(x) = g(f(x)), we substitute f(x) for every occurrence
of x in the rule for g. Thus
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3 )2 9 9+2(x-1)2 2x2-4x+11
= _ o iRl Axc Rl
g(f(x)) (X-l *Z (x-1)2 x2-2x +1 x2-2x + 1

(e) To find (f. f)(1) = f(f(1)), we first find £(1).
Since x = 1 is not in the domain of f, f(1) is undefined. Thus (f. f)(1)
is undefined.
(f) To find (g. g)(2) = g(g(2)), we first find g(2).
g2)=(2)2+2=6

Thus g(g(2)) = g(6) = (6)2+ 2 =38.

) 3x-5 )1/3
Given h(x) = A , we want to write this function as a
1/3
composite of two simpler functions. We see that h(x) =u  where
3x-5 1/3

u= Thus we let f(u) =u and

T x+4

3x-5 3x-5
g(x) =xx+—4 Then h(x) = f( %LZ )= f(g(x)) = (fo g)(X).

We are given a fixed cost F(x) = $2438 and a variable cost
V(x) = 4x2 - 2x.

(a) The cost function C(x) = F(x) + V(x). Thus C(x) = 2438 + 4x2 - 2x.

(b) If x = 50 units then the cost will be C(50) = 2438 + 4(50)2 - 2(50) =
$12,338.

If x dollars are invested at 7% compounded annually, the interest
earned in one year will be .07x dollars. The amount A will be

A = x (original amount) + .07x (interest earned) = (1.07)x

Exercise Set 1.3 , (Page 32)

5.

To find the slope of a line, we put the line into slope-intercept form
y = mx + b. The coefficient of x will be the slope.
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(a) y =3x + 2. This line is in slope-intercept form and m = 3.

(b) y=3. Sincey =0"x + 3, the slopem = 0.

(©) x=%y+2
2 3
x-2=§y or y=§x-3

3
The slope m =5

7. When m is positive, the line rises from left to right; when m is
negative, the line falls from left to right.

(@) y=2x+3 m=2>0 line rises from left to right
-3 -3 ; .

(b) y=%5x+5 m =<0 line falls from left to right
4 4 o .

(@ y=3x-3 m=3 >0 line rises from left to right
2 =2 . ;

(d y=5x-3 m=7<0 line falls from left to right

15. We want to find the point-slope form for the line. This form is
y - y1=mx-xy).

(a) The given points are (-1,2) and (3,5)

: (y2-y19) 5-2 3
The slope is m = (xg-x7) ~3-C1) ~4

We use this slope and either point in the form. Taking the

. 3
point (-1,2), we havey - 2 = 7 (x + 1)

(b) The given points are (-3,-4) and (0,0)

. (y2-y1) -4-0
The slope is m = (Xg-X1) ~3-0
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Using the point (0,0) in the point-slope form yields

y-0=

W[

4
(x-0) or y=3x

17. We first solve x + 2y = 3 for y obtaining 2y = -x + 3, or equivalently,

23.

y =-x/2 + 3/2. Hence, the slope of any line parallel to the given line
is -1/2. Since the desired line passes through (1,-2), we can use the
point-slope equation with m =-1/2, x; =1, and y; =-2 so that

-1
y+2=75Kx-1)

Multiplying both sides by -2 yields
2y-4=x-1
or
0=2y+x+3

@ x+ y=6
2x+3y =15

Multiplying the top equation by -3 and adding to the bottom
equation gives -x = -3 or x = 3. Substituting x = 3 into the top
equation, we have y = 3. Thus the only solution of the system is
x = 3, y = 3, and the lines intersect at the point (3,3).

(b) x-2y=7
3x -6y =14

The system has no solution. There is no pair of real numbers x and
y such that x - 2y =7, then 3x - 6y = 14, for if x - 2y = 7, then
3x - 6y = 3(x - 2y) = 3(7) = 21. In this case the lines are parallel.

() x+3y=1
-2x -6y =-2

Since the second equation is -2 times the first, there are infinitely
many solutions of the system and the lines are identical.
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(d) x-3y=-5
2x +3y =-1

Adding the two equations gives 3x = -6 or x = -2. Substituting x = -2
into the top equation gives -3y = -3 or y = 1. Thus the only solution

of the system is x = -2, y = 1, and the lines intersect at the point
(-2, 1).

Exercise Set 1.4, (Page 46)

1. (a) The principal P is $8000 and the rate of interest is 12% so r = .12.
The simple interest formula is:

S =P + Prt = 8000 + 8000 (.12) t

The amount owed S= 8000 + 960t

®) S (dollars) t S = 8000 + 960
0 8,000
11,000 A 1 8,960
_ 2 9,920
: 3 10,880
9,000 - 4 11,840

8,000

} t (years)

(c) After 6 years, t = 6, and the amount owed is

S = 8000 + (960)(6) = $13,760

3
(d) After 9 months, t =7 and the amount owed is

3
S = 8000 + (960) (;1' = $8,720

11. The original value of the car is C = $8000. The dollar value of the
car after t years of ownership is V= C(1 - rt) = 8000(1 - rt). When t =2
the car's value is $4800, thus



