ENZYME KINETICS

CATALYSIS & CONTROL:

A REFERENCE OF THEORY AND BEST-PRACTICE METHODS

DANIEL L. PuricH



Enzyme Kinetics:
Catalysis & Control

A Reference of Theory
and Best-Practice Methods

Daniel L. Purich

Department of Biochemistry and Molecular Biology
University of Florida College of Medicine
Gainesville, Florida

B e

o 1 H

W
9
: (‘ 4 AMSTERDAM e BOSTON e HEIDELBERG o LONDON e NEW YORK ¢ OXFORD
e v s PARIS e SAN DIECO e SAN FRANCISCO e SINGAPORE e SYDNEY ¢ TOKYO
ELSEVIER Academic Press is an imprint of Elsevier



Academic Press is an imprint of Elsevier

32 Jamestown Road, London NW1 7BY, UK

30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
525 B Street, Suite 1900, San Diego, CA 92101-4495, USA

First edition 2010
Copyright © 2010 Elsevier Inc. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means
electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher.
Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+ 44)
(0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions @elsevier.com. Alternatively, visit the Science and
Technology Books website at www.elsevierdirect.com/rights for further information

Cover Image: Two views of the X-ray crystallographic structure of the complete Thermus thermophilus 70S ribosome
containing bound messenger RNA and transfer RNAs at 5.5-A resolution (from Yusupov, M. M., Yusupova, G. Z.,
Baucom, A., Lieberman, K., Earnest, T. N., Cate, J. H., and Noller, H. E. (2001) Science 292, 883-96 with permission).
Perhaps Natures’s most complicated molecular machine, the ribosome consists of RNA and proteins that work together to
accomplish the multiple structural, catalytic, and force-generating steps required for the high-fidelity synthesis and
elongation of polypeptides. Although the centerpiece of the 2009 Nobel Prizes in Chemistry, the ribosome remains a major
challenge for enzyme scientists and kineticists seeking to unlock its many secrets.

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of
products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or
ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent
verification of diagnoses and drug dosages should be made

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-380924-7

For information on all Academic Press publications
visit our website at elsevierdirect.com

Typeset by TNQ Books and Journals Pvt Ltd.
WWww.tng.co.in

Printed and bound in China
10111213141510987654321

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER  BOOKAID g, Foundation

International



Enzyme Kinetics: Catalysis & Control

A Reference of Theory
and Best-Practice Methods




When I first pursued bench research on enzymes, my only
trusted companions were Enzymes by Dixon & Webb and the
first ten volumes of MErHODS IN ENzymoLoGY. As effective as
these resources were at guiding my inexperienced hands
and schooling my thoughts, they were, more often than not,
insufficient — simply because researchers of that time lacked
a comprehensive view of enzyme Kkinetics, catalysis and
control. With the central metabolic pathways already well
defined and with the broad outlines of molecular biology
emerging, modern enzyme science was established by
a generation of biochemists that included my mentors Herb
Fromm and Earl Stadtman and their mentors Paul Boyer and
Fritz Lipmann. Recognizing a need for a comprehensive
multi-volume treatise on enzyme Kkinetics, and with
considerable encouragement from the founding editors Nate
Kaplan and Sydney Colowick as well as Academic Press
president Jim Barsky, I was privileged thirty years ago to
initiate what has become the six-volume Enzyme Kinetics &
Mechanism sub-series in METHODS IN ENzymoLoGy. More
recently, I sought to produce a single-volume enzyme
kinetics reference that might serve the needs of biochemists,
molecular life scientists, as well as physical scientists and
engineers with an interest in learning how enzymes work.
I undertook what became a seven-year task of writing
a single-authored reference that I hoped would prove to be
accessible, interesting, informative, and, above all, useful. I
also had in mind the needs of those who come to enzyme
science from physics and engineering, and for them, I
included additional basic information not typically found in
enzyme kinetics books.

Much of biochemistry as well as molecular and cell
biology is devoted to understanding how enzymes work,
simply because enzymes are the verbs in all biotic
sentences—actively playing countless roles so essential for
the flow of matter, energy and information within and
among cells. It follows then that, during the course of
virtually any study of a cellular process, one or more
enzymes will play an indispensable part, and it is that
realization that motivates widespread fascination about
enzyme action. Current estimates put the number of unique
enzyme-catalyzed reactions in the neighborhood twenty
thousand, and despite the universality of certain metabolic
processes, organisms have evolved in response to their own
unique set of selective pressures. In this respect, enzymes
catalyzing the same reaction in any two species probably
have different amino acid sequences and are likewise
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unlikely to exhibit identical catalytic properties (e.g.,
substrate specificity, catalytic efficiency, sensitivity to
metabolic end-products, etc.). With the number of species
easily exceeding 300,000, there must be countless unique
molecular forms of any single enzyme, say hexokinase or
alcohol dehydrogenase, especially when one includes the
tissue-specific isozymes found in any single organism.
A mutation in any single enzyme has the potential to affect
the performance of complete metabolic pathways or even
impair the health of an entire organism. Thus, while one can
draw general inferences about metabolism, the physiology of
various life forms must to some extent reflect this robust
diversity of enzymes, and the universe of enzymes available
for kinetic characterization is astonishingly vast.

The cardinal feature of every enzyme is catalysis, and
any endeavor to characterize the properties of an enzyme
requires the examination and determination of its time-
dependent processes. One approach for analyzing the cata-
lytic mechanics of complex enzyme systems is to determine
the chronology of discrete steps within the overall proc-
ess—a pursuit called “kinetics.” This strategy allows an
investigator to assess the structural and energetic determi-
nants of transitions from one step to the next. By identifying
voids in the time-line, one considers the possibility of other
likely intermediates and ultimately identifies all elementary
reactions of a mechanism. Kinetics is a highly analytical and
intellectual enterprise that is deeply rooted in chemistry and
physics, and enzyme chemists have intuitively and inven-
tively honed the tools of chemists and physicists to inves-
tigate biological processes. Enzyme kineticists have
likewise gainfully exploited advances in physical organic
chemistry, structural chemistry, and spectroscopy to dissect
enzyme mechanisms into their constituent time-ordered
steps. The persuasive logic of kinetics also exemplifies the
rigorous application of the scientific method in the molec-
ular life sciences, especially biochemistry and biophysics,
molecular and cell biology, as well as pharmacology,
immunology, and even neuroscience. In short, enzyme
kinetics discloses Life’s rhythms—from the virtually
instantaneous photon absorption in photosynthesis to what
Frost called “‘the slow smokeless burning of decay.”

My goal in writing this reference book was to present and
explain the kinetic principles that have advanced enzyme
science so that students can understand past and current
research publications and can advance the field by applying
these principles and by inventing new ones. Over my thirty-
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five years of lecturing, I have attempted to give voice to the
beauty of enzyme science by providing graduate students
with a solid grounding in its underlying chemical principles.
The latter requires comprehension of basic chemical
kinetics, appreciation of the power and scope of initial-rate
and fast-reaction techniques, the origins of kinetic isotope
effects, as well as the grandeur of allostery. Beginning with
my hand-copied notes from Herb Fromm’s semester-long
course on enzyme kinetics at lowa State University as well
as the notes Earl Stadtman used in his revered biochemistry
course at NIH, I developed and consolidated my own ideas
about enzyme catalysis and control in Chem 242: Chemical
Aspects of Biological Systems and Chem 252: Enzyme
Kinetics and Mechanism, courses I presented annually over
my |l-year tenure in the Department of Chemistry at the
University of California Santa Barbara. Other topics were
developed in BCH 6206: Advanced Metabolism: BCH
6740: Physical Biochemistry & Structural Biology; and
BCH 7515: Dynamic Processes in the Molecular Life
Sciences, courses offered over the past 24 years here at the
University of Florida. I have also presented short courses on
enzyme Kinetics at several pharmaceutical firms and foreign
universities. My experience is that students from remark-
ably diverse backgrounds can readily comprehend, appre-
ciate, and apply the logic of enzyme kinetic theory,
especially when provided with logical explanations and
aided initially by step-by-step derivations.

Because the principles and practices of enzyme kinetics
are also of great interest to chemists, engineers and physi-
cists, this book also presents basic background information
that should allow them to fill gaps in their understanding
of biochemical and organochemical principles. As they
discover the molecular life sciences, an entirely new gener-
ation of biophysicists and structural biologists has emerged.
To facilitate their use of this book, I have also indicated
the catalyzed chemical reactions upon first mention of
most enzymes. | also provided additional descriptions of
biochemical phenomena and explanations of regulatory
concepts that students of chemistry, engineering and physics
may not otherwise encounter in their coursework.

While enzyme kinetics might become a life-long and
fulfilling passion for a few biochemistry students, my
experiences suggest that virtually all molecular life scien-
tists can benefit from a solid understanding of kinetic
principles and their rigor in testing rival models. Learning
that many students retained and used my course notes well
beyond their graduate student years inspired me to write
arigorous, yet thoroughly explained, reference book. While
designed as a comprehensive reference, the book may be
suitable for special topics courses in enzyme kinetics and
enzymology. While the scope and detail of some sections
may prove to be too encyclopedic for classroom presenta-
tion, such sections should be a valuable resource in the
laboratory and in preparation of research reports and
publications.
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Enzyme kinetics encompasses a spectrum of experi-
mental approaches, each suited to a particular task or time
domain. Irrespective of the technique, the underlying
motivation is to develop quantitative models for analyzing
an enzyme of interest. Model building in kinetics is man-
ifested as a multi-reaction scheme comprised of all reacting
species identified and the rate constants and equilibrium
constants needed to define their interactions. Models are
stressed throughout this reference. Chapter 1 introduces the
history and scope of enzyme catalysis as well as theories of
enzyme rate enhancement, and Chapter 2 provides a foun-
dation in the chemistry of enzyme active sites. The next nine
chapters focus on what I consider to be the core topics
of enzyme kinetics: Chapter 3 on the basic principles
of chemical kinetics; Chapter 4 on making enzyme rate
measurements; Chapter 5 on initial-rate theory of one-
substrate enzymes; Chapter 6 on initial rate behavior of
multi-substrate enzymes; Chapter 7 on a myriad of factors
influencing enzyme activity; Chapter 8 on reversible and
irreversible enzyme inhibition: Chapter 9 on using isotopes
to uncover otherwise invisible aspects of enzyme catalysis;
Chapter 10 on fast reaction techniques; Chapter 11 on
enzyme cooperativity and regulatory enzyme kinetics; and
Chapters 12 and 13, which are unique among enzyme
kinetic books, respectively covering single-molecule
enzyme kinetics and those mechanoenzymatic reactions
that generate force.

To provide direct access to the research literature on
enzyme kinetics, over 2,600 original research reports and
reviews are cited. Even so, this list of references is neces-
sarily incomplete, and I apologize to those scientists whose
outstanding contributions could not be included. I also
welcome comments, corrections, needed additions, and
suggestions for papers meriting further study. Wherever
possible. I have attempted to give full attribution to the ideas
of others, and 1 will be the first to say that a student of
enzymology is always a student, and rarely a master. Human
frailty is such that we too often do not know what we do not
know, a failing evident in nearly every scholarly enterprise.
For the instances where I have failed to explain an important
concept adequately or have misinterpreted the findings of
others, I apologize in advance and would welcome
suggestions for improvement.

As I pointed out in 2001 (Trends in Biochemical Sciences
26. 417), biological catalysis need not require the making/
breaking of covalent bonds: some substrate-like and
product-like states differ only with respect to their non-
covalent bonding interactions. Accordingly, I redefined an
enzyme as a biological agent that catalyzes the making/
breaking of chemical bonds, a term that includes both
covalent and noncovalent bonds. I also suggested that a new
enzyme class is needed to classify nearly every so-called
ATPase or GTPase reaction as specialized enzymes that
transduce covalent bond energy into mechanical work. In
every known case. these so-called energase reactions can be
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written in terms of a mechanism having one or more energy-
driven, affinity-modulated binding interaction, much like
the ATP dependent actoclampin motor that Professor
Richard Dickinson and I recently proposed is the force-
generating mechanism responsible for cell crawling. This
reference book is the first to introduce a fully integrated
treatment of energase-type mechanoenzymes and to describe

how kineticists have discovered fundamental features of

energase-type reactions.

Over my many years writing this book, I benefitted from
the advice and suggestions from many friends, especially
my pre- and post-doctoral lab partners, Fred Rudolph and
Charles Y. Huang, as well as Bryce Plapp, Jeremy Knowles
and Dan Koshland. (Fred’s, Jeremy’s and Dan’s passing
represent an immense loss for all of enzymology.) [ am

likewise delighted to acknowledge my University of

Florida colleagues, especially Professors Linda Bloom and
David Silverman as well as R. Donald Allison, my coauthor
on other book projects. 1 likewise thank Professors Giulio
Magni, Silverio Ruggieri, and Nadia Raftaelli, for making
the Istituto di Biotecnologie Biochimiche at the Universita
Polytecnica delle Marche in Ancona, Italy such
a welcoming intellectual and cultural home away from
home. Many ideas presented in this book were first
conceived, nurtured and/or tested during what are always
pleasant stays in Ancona. Finally, I am indebted to the
students and postdoctoral scientists, whom I have taught and
who in return have taught me, both in my laboratory as well
as in classrooms at the University of California and

University of Florida. Their persistent and insightful ques-
tions have given focus and meaning to my career as
a teacher, chemist, and molecular life scientist.

I also note with sadness the recent passing of my post-
doctoral mentor Earl R. Stadtman. a magnificent scientist
who quietly imbued in all his students a fascination for
enzymology and metabolic regulation.

The burden of converting my manuscript into this
reference book was lightened through the mastertul assis-
tance of Jacquiline Holding and Caroline Johnson at
Elsevier as well as the capable copyediting of my student
Matthew Neu. I am also grateful to my partner Li Lu for all
of her understanding and sustaining encouragement during
my struggle to write and illustrate this book.

Above all, I acknowledge Professor Herbert J. Fromm, in
whose laboratory I began my research career. I marvel at
Herb’s work ethic, his focus and intensity, and his sustained
excitement and passion for science. Herb’s seminal research
on multisubstrate enzyme kinetic mechanisms and his
timeless book [INmiaL  Rate  Enzyvme  KINETICS  inspired
a generation of scientists to pursue careers in enzyme
kinetics and mechanism. In recognition his high standards
of personal and professional conduct as well as our forty-
plus years of friendship, I humbly dedicate this book
to Herb.

Daniel L. Purich
October, 2009
Gainesville, Florida
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