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Preface

Since our first CompLife symposium last year, we have seen the predicted trends
in the life and computer science areas continue with ever-increasing production of
high-quality data mated to novel analysis methods. The integration of the most
advanced computational methods into experimental design and in particular the
validation of these methods will remain a challenge. However, there is increasing
appreciation between the different scientific communities in computer science
and biology that each has substantial goals in common and much to gain by
collaboration on complex problems. Providing a forum for an open and lively
exchange between computer scientists, biologists, and chemists remains our goal.
To encourage precisely this type of exchange, crossing the borders of the sciences,
we organized the First Symposium on Computational Life Science in Konstanz,
Germany in September 2005 (the proceedings were published in this series as
LNBI 3695). Due to the success of the symposium, especially in bringing together
scientists with diverse backgrounds, a second symposium was held in Cambridge
(September 27-29, 2006).

The conference program shows that the scientific mix worked out very well
again. We received higher quality submissions (56 this time) and selected 23
for oral presentation. As a supplement to the normal conference program we
arranged for a “Free Software Session,” where a dozen open source tools and
toolkits were presented. Due to the nature of such software projects it seemed
inappropriate to cover them in printed form but the conference Web site will
continue to link to the respective pages (www.complife.org). Adding this session
to the symposium also educated attendees on how to use some of the methods
presented and shed some light on the wealth of free tools available already.

Selecting the papers included in this volume would not have been possible
without the help of our Area Chairs and an international Program Committee
that put in countless hours to create a minimum of three detailed reviews for each
paper! And, of course, a successful conference relies on many individuals working
hard behind the scenes. We would like to thank first and foremost Susan Begg
and Heather Fyson for conference and local organization and keeping everybody
on track. Peter Burger worked on the Web pages promoting the conference and
Thorsten Meinl was the man behind the free software session and, together with
Andreas Bender, also took care of publicity. Last, but certainly not least, thanks
go to Ingrid Fischer and Richard van de Stadt for putting together this volume!

July 2006 Michael R. Berthold
Robert Glen
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Improved Robustness in Time Series Analysis of
Gene Expression Data by Polynomial Model
Based Clustering

Michael Hirsch!*, Allan Tucker!, Stephen Swift!, Nigel Martin?,
Christine Orengo®, Paul Kellam*, and Xiaohui Liu!

! School of Information Systems Computing and Mathematics, Brunel University,
Uxbridge UB8 3PH, UK
2 School of Computer Science and Information Systems Birkbeck, University of
London, Malet Street, London, WC1E 7HX, UK
3 Department of Biochemistry and Molecular Biology, University College London,
Gower Street, London, WC1E 6BT, UK
4 Department of Infection, University College London, Gower Street, London, WC1E
6BT, UK

Abstract. Microarray experiments produce large data sets that often
contain noise and considerable missing data. Typical clustering meth-
ods such as hierarchical clustering or partitional algorithms can often be
adversely affected by such data. This paper introduces a method to over-
come such problems associated with noise and missing data by modelling
the time series data with polynomials and using these models to clus-
ter the data. Similarity measures for polynomials are given that comply
with commonly used standard measures. The polynomial model based
clustering is compared with standard clustering methods under differ-
ent conditions and applied to a real gene expression data set. It shows
significantly better results as noise and missing data are increased.

1 Introduction

Microarray experiments are widely used in medical and life science research [11].
This technology makes it possible to examine the behaviour of thousands of
genes simultaneously. Moreover, microarray time series experiments provide an
insight into the dynamics of gene activity as an essential part of cell processes.

Despite efforts to produce high quality microarray data, such data is often
burdened with a considerable amount of noise. Attempts to reduce the noise
are manifold, including intelligent experimental design, multiple repeats of the
experiment and noise reduction techniques in the data preprocessing [13]. In
addition to the noise problem, parts of the data often can not be retrieved
properly so that the dataset contains missing values. For example, a dataset of
several experiments with yeast (about 500,000 values) [10] has more than 11%
missing values.

* This work is in part supported by the BBSRC in UK (BB/C506264/1).

M.R. Berthold, R. Glen, and 1. Fischer (Eds.): CompLife 2006, LNBI 4216, pp. 1-10, 2006.
© Springer-Verlag Berlin Heidelberg 2006



2 M. Hirsch et al.

With decreasing quality the direct clustering (DC) of the data with standard
methods [5] becomes less reliable. If the data has considerable missing data, the
straightforward calculation of the score functions homogeneity and separation
[4] for the cluster quality becomes impossible. To overcome these problems this
paper suggests the modelling of the data with continuous functions. The model
based clustering is done not on the original dataset directly, but on models learnt
from it. The models reduce random noise and interpolate missing values, thereby
increasing the robustness of clustering.

In this paper the polynomial model based clustering (PMC) is introduced. In
contrast to the DC of the data, which calculates the similarity matrix directly
from the data, PMC comprised of three steps: the modelling, the calculation of
the similarity matrix from the models and the grouping.

2 Methods

The application of continuous functions in time series modelling is motivated by
some specific assumptions. Time series result from measurements of a quantity
at different time points (TP) over a certain time period. The quantity changes
continuously if it could be measured at any time in the presumed time period.
Measurement restrictions are due to extrinsic factors such as technical restric-
tions. Moreover, if a continuous quantity has the value z at TP a and the value
y at TP b, then the quantity has any value between x and y at some TP between
a and b. Often time series or functions have no sharp edges in the time response,
i.e. they are differentiable or smooth.

Any smooth function can be approximated by the Taylor expansion, i.e. by a
polynomial. Polynomials are easy to handle since basic operations can be done
by simple algebraic manipulations on the parameters. Therefore polynomials are
a natural choice in time series modelling. Nevertheless, other classes of functions
might be used as well. Previously, polynomials have also been used in other
applications of gene expression data modelling [8,12].

2.1 Modelling

Consider series of observations, y;(¢t;) { =1...N, i € I = {1,...,T}), of N
quantities at T TPs. The time elapsed between two measurements at ¢; and t;4;
might be different through the series. A sub-series of y;(¢;) in which the missing
values are omitted is denoted by 9;(¢;) ¢ € J, where the index set J is the subset
of I that contains these time-indices, where a value is available. If J is equal to
I, then gi(t;) = yi(ts).

Polynomials have the general form

P(t) == Zaiti 3 (1)
=0

where n is the degree of the polynomial. To fit a polynomial to the data, the
least squares method is used [9]. This method optimises the parameter, «;, of a
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function f(t,aq,...,0n), n+1 < |J], |J| is the number of elements in J, such
that the function Q(ap,...,an) = Y ey (f(ti a0, .. an) — Gi(t:))? becomes
minimal. Therefore the equations 8Q/8ay = 0, k = 0...n have to be solved.
Applying this equation to polynomials yields

S Y = da(ty) i=0,...n (2)

k=0 jeJ jeJ

These are n + 1 linear equations for the n 4+ 1 parameters ag, ..., 0n. To solve
these equations an inverse matrix of the (n + 1) x (n 4 1) matrix 3, t?” has
to be calculated for each distinct subset J of I that occurs in the data set. To
avoid large numbers in the calculation and hence a loss of precision, the time
series are scaled to the time interval [—1,1].

The modelling is done using polynomials with degrees ranging from 2 to 12.
Figure 1 shows examples for the degrees 4, 8 and 12. With increasing degree the

models fits the data better, but also may over-fit the data.

Fig. 1. Modelling of gene expression data with polynomials of different degrees

2.2 Similarity Measures

To calculate the similarity between polynomials, distance measures for functions
have to be used. Usually these distance measures involve integration, which re-
place the sum in the equations for discrete measures. Polynomials are expandable
into a Taylor-series, so that a large class of distance measures can be applied.
For polynomials it is possible to calculate the anti-derivative, so that numeri-
cal integration can be avoided. Each polynomial is represented by the vector of
its parameters, (ag,@1,...,0y). Therefore the sum of two polynomials, repre-
sented by () and (8;), can be written as (ap + B0, 1 + Bi,...,0n + Bn) and
the anti-derivative of (c;) is represented by (0, a0, 1/201,. .., 1/(n+1)ay). The
representations for the products and derivatives of polynomials can be found
analogously. Therefore, the calculation of the integrals can be reduced to some
simple algebraic operations on the n + 1 parameters o, which keeps the com-
putational complexity for the distance measures low. The calculation of the
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derivative, the anti-derivative, the sum and the function value of polynomials
takes O(n) operations, the calculation of the product of two polynomials takes
O(n?) operations. For the DC the calculation effort depends on the number of
TPs T. Because the number of parameters has to be considerably smaller than
the number of TPs (otherwise the models would be over-fit), the calculation of
the similarity matrix takes less operations for the PMC than for the DC. Two
distance measures are considered, the L, distance and the distance based on a
continuous Pearson correlation coefficient.

L, Distance. The L, distance is a standard distance in the space of continuous
functions and is equivalent to the p-distance (Minkowski distance) for finite
dimensional spaces, such as Euclidean distance,

da,y) = /S (@ —y)? | (3)

or the Manhattan distance. Let = z(t) and y = y(¢) be continuous functions
over the closed interval [a,b], then the L, distance is given by

b
d(,y) = (/ / j2(t) — y(t)|Pdt . (4)

Usual choices for the exponent are p = 2, which is analogous to the Euclidean
distance or p = 1, which is analogous to the Manhattan distance.

Continuous Correlation Coefficient. Using the mean value theorem of calcu-
lus it is possible to formulate the Pearson correlation coefficient of series x = {x;}

and Yy= {yi}v
YTy — % DT )Y

VE2 - E(C2)?) (v - #(Cw)?)

for integrable functions. Let = z(t) and y = y(¢) be continuous functions over
the closed interval [a, b] and L = b — a, then the correlation r can be calculated by

r(z,y) = ()

f: wydt — 1 abzdt f: ydt

\/ (S w2t - 2(J7 zdt)?) (S vt = £(J2 yav?)

(6)

r(x,y) =

2.3 Grouping

The similarity matrices can be used with any standard clustering technique. To
compare the method presented in this paper the Partitioning Around Medoids
(PAM) [6] and two variations of hierarchical clustering algorithms were used, the
average-linkage cluster analysis and the complete-linkage algorithm [3]. These
methods are well-established and have been used for clustering microarray data,
with some success.
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3 Data Set

The PMC is tested with a subset of the gene expression data of the malaria
intraerythrocytic developmental cycle [2]. This subset was chosen, because a
functional interpretation of the genes is known and can be used to assess the
clusterings. It comprises 530 genes in 14 functional groups. The gene expression
is measured in 48 TPs with 1 hour time differences. The data set contained
0.32% of missing data and had a low noise level, which has been verified through
[2] and by visually plotting many of the functional groups.

4 Experiments

In every experiment the clustering is done with PAM, the average-linkage method
and the complete-linkage method. For DC the methods were always applied to
both the Euclidean and the correlation based similarity matrix. Polynomials of
degrees from 2 to 12 were fitted to each variation of the data set and both the
L, distance (4) and the correlation (6) were used for clustering. The following
experiments were conducted.

1. The data set was clustered without any variations.

9. Normal distributed noise was added to the data. The standard deviation var-
ied between 2% and 66% of the overall mean of the original gene expression
values. The experiment was repeated 25 times.

3. The data set was changed by randomly deleting values. The number of miss-
ing values varied between 2% and 50%. The experiment was repeated 25
times.

To validate the clustering results, the weighted £ (WK) method [1,7] and quotient
of homogeneity and separation (H/S) [4] were used. The WK is a similarity
metric between clusters, with possible values between -1 and 1. The larger the
WK value the better the agreement between the cluster results. For a clustering
C ={Ci,...,Ck} and a distance measure d H/S is given by

K K
HC) =Y H(Ck) =) Y d= )’ (7)
k=1

k=1xcCyg

and

SE@ = Y, drre)?, (8)

1<I<k<K

where r = 1/nk Y, cc, T are the cluster centres. A good clustering should have
a low homogeneity value and a high separation value, hence a low H /S quotient.
Because it is a quotient of sums of distances, H/S is always non-negative.



