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Foreword

I am very pleased and privileged to write a short foreword for the monograph
of Dean Driebe: Fully Chaotic Maps and Broken Time Symmetry. Despite
the technical title this book deals with a problem of fundamental importance.
"To appreciate its meaning we have to go back to the tragic struggle that was
initiated by the work of the great theoretical physicist Ludwig Boltzmann
in the second half of the 19th century.

Ludwig Boltzmann tried to emulate in physics what Charles Darwin had
done in biology and to formulate an evolutionary approach in which past and
future would play different roles. Boltzmann’s work has lead to innumerable
controversies as the laws of classical mechanics (as well as the laws of quan-
tum mechanics) as traditionally formulated imply symmetry between past
and future. As is well known, Albert Einstein often stated that “Time is an
illusion”. Indeed, as long as dynamics is associated with trajectories satisfy-
ing the equations of classical mechanics, explaining irreversibility in terms of
trajectories appears, as Henri Poincaré concluded, as a logical error. After a
long struggle, Boltzmann acknowledged his defeat and introduced a probabil-
ity description in which all microscopic states are supposed to have the same
a priori probability. Irreversibility would then be due to the imperfection
of our observations associated only with the “macroscopic” state described
by temperature, pressure and other similar parameters. Irreversibility then
appears devoid of any fundamental significance.

However today this position has become untenable. Nonequilibrium
physics has shown that the flow of time plays an essential constructive role
as it leads to nonequilibrium structures; often called “dissipative structures”
to distinguish them from equilibrium structures such as crystals. It becomes
absurd to imagine that we, through our approximations, are at the origin
of the arrow of time found at all levels of observation. A time-reversible
world would also be a world we could not learn how to describe as every
experiment implies a difference between past and future.

What then is the way out? Gradually I was driven to the conclusion
that the traditional formulations of classical and quantum mechanics have
to be extended to include time symmetry breaking.! This, however, requires
the construction of a new mathematical formulation which reduces to the
usual formulation of classical or quantum mechanics in simple situations.

'1. Prigogine, From Being to Becoming (W.H. Freeman and Company, New York, 1980);
L. Prigogine and 1. Stengers, Order Out of Chaos (Bantam, New York, 1983); I. Prigogine,
The End of Certainty (The Free Press, New York, 1997).
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While the physical ideas have been clear for a considerable length of time?
a precise mathematical formulation has emerged only during the past few
years. The simplest example where we can at present extend the laws of
classical dynamics is precisely deterministic chaos, the subject of this book.

The essential point is that dynamics can be formulated either on the level
of individual trajectories or in terms of ensembles as introduced by Gibbs
and Einstein in their fundamental work on thermodynamics. Traditionally
ensembles were associated with ignorance. It was always assumed that from
the dynamical point of view the two descriptions are equivalent. However —
and that is the most interesting conclusion described in this book — this is not
so for chaotic systems. The probabilistic description in terms of ensembles is
properly formulated with operator theory extended to generalized functional
spaces. Then the ensemble description leads to new solutions irreducible to
the usual description in terms of trajectories. That is what we mean by
the “extension” of classical dynamics. Thanks to this recent development,
we may consider that Boltzmann’s time paradox has found its natural res-
olution. It is no more necessary to make any reference to extra-dynamical
features such as coarse graining or environmental noise as has been done in
the past.

Chaotic maps are only one example where the individual description in
terms of trajectories and the ensemble description lead to different formu-
lations. Thermodynamic systems form another class. This class has been
studied elsewhere.? Dean Driebe’s presentation is limited to chaotic maps
but even so it makes fascinating reading as it shows how to solve a long-
standing paradox, which has been hotly debated for over a hundred years.

Dean Driebe is especially well-prepared to write this monograph as he
has made a number of original contributions to the subject. I am sure that
his book will be of great interest to all scientists, philosophers and engineers
who are interested in the perennial questions of the limits of determinism
and the meaning of time.

Ilya Prigogine

2]. Prigogine, Nonequilibrium Statistical Mechanics (Wiley-Interscience, NewYork,
1962).

3T. Petrosky and 1. Prigogine, “Poincaré resonances and the extension of classical
dynamics,” Chaos, Solitons & Fractals 7, 441 (1996); “The Liouville space extension of
quantum mechanics,” in Advances in Chemical Physics, 99, (John Wiley, New York, 1997).



Preface

This book originated from notes for a series of lectures given by the author at
the University of Chile in December 1994. The purpose of the lectures was to
present some of the recent work, mainly of the groups directed by I. Prigogine
in Austin and Brussels, on the time evolution of densities in chaotic systems
and its relevance to the problem of irreversibility. The emphasis was on
the construction of new spectral decompositions of time evolution operators
in generalized functional spaces. These decompositions allow for a detailed
study of nonequilibrium processes and an understanding of time-symmetry
breaking. The approach realizes part of the goal of the Prigogine group
to understand irreversibility as an intrinsic property of unstable dynamical
systems.

The book deals only with fully chaotic maps, where complete, exact
spectral decompositions have been obtained. Besides the intrinsic interest of
these systems — even if they don’t display generic behavior from a physical
point of view — they elucidate the main assertion that dynamical instability is
the root of irreversibility. Several advances have been made in the last couple
of years, mainly in explicit results obtained for a variety of one-dimensional
maps and the discovery of an unexpectedly rich variety of spectra found in
a class of simple one-dimensional piecewise-linear maps. These new results,
some of which have not yet been published, have been included so that the
book gives an up-to-date presentation. The purpose though has not been
to give an exhaustive review of the 511Bject but to write an introduction
for students and research workers who want to know how the generalized
spectral decompositions are obtained and the range of systems that have
been considered. The presentation does not strive for mathematical rigor,
rather it emphasizes ideas, results and calculational tools. The reader inter-
ested in mathematical details may refer to the literature cited as well as the
forthcoming monograph by I. Antoniou.

The first two chapters essentially cover background material. In Chap-
ter 1 the motivation for the approach used is discussed as pertinent to the
dynamical understanding of irreversibility. An introduction to the concept
of probability densities in the phase space of a chaotic system is given and
the hierarchy of types of behavior in phase space is presented. In Chapter 2
a more detailed discussion of nonequilibrium statistical mechanics of chaotic
maps is given and time correlation functions of observables is discussed in
the context of how their behavior reflects on the spectral properties of the
time evolution operator of the system.

The heart of the book begins in Chapter 3 where the simple one-dimensional
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Bernoulli map is studied and the construction of the spectral decomposition
of its Frobenius—Perron operator is given in detail. In this and the follow-
ing chapter one-dimensional systems with non-invertible trajectory dynamics
are considered. These systems are irreversible from the beginning but they
share many key features with the invertible systems considered later in the
book. In Chapter 4 a variety of maps of the unit interval are discussed. An
algebraic technique utilizing symmetry is used to obtain the explicit spectral
decomposition of some maps, including the well-known tent map. Also, a
map with a fractal repellor is considered and the decomposition of topolog-
ically conjugate maps is discussed and applied to obtain the decomposition
of the logistic map with unit height.

Chapter 5 is devoted to the baker transformation as the paradigm system
to elucidate the time-symmetry breaking of the generalized spectral decom-
position. The trajectory dynamics of the baker map is invertible so the
assoclated time evolution operators for densities or observables are unitary
in a Hilbert space setting. The group evolution in Hilbert space splits into
two distinct semigroups in the generalized representation. In Chapter 6 a
model system of deterministic diffusion is considered. Transport properties
are identified in the exact spectrum of the full time evolution operator of the
system and quite interesting generalized eigenstates with fractal properties
appear.

There are several appendices collected at the end of the book. This
material expands on some topics discussed in the main text and fills in details
of some of the calculations. At the end of each chapter appear bibliographical
notes with comments on what can be found in the relevant books and papers.
No attempt has been made to be exhaustive in the referencing. Also, in the
text itself there do not generally appear specific reference citations. I feel
that this is appropriate for a book presentation.

I am grateful to Enrique Tirapegui for iniviting me to Santiago to give
the lectures and write this book. My utmost gratitude goes to I. Prigogine
for his support and encouragement and for his kindness in writing the fore-
word. I thank Hiroshi H. Hasegawa from whom I learnt many of the methods
presented in this book. Many of the recent results presented in Chapter 4
have been obtained in collaboration with Gonzalo Ordéniez. My progress in
the subject benefitted over the years from discussions with Ioannis Anto-
niou, Oscar Bandtlow, Francisco Bosco, Pierre Gaspard, Donal MacKernan,
Bill Saphir and Shuichi Tasaki. I also acknowledge Irene Burghardt, David
Daems, Brian LaCour and Suresh Subbiah for their comments on draft ver-
sions of the manuscript. Thanks is due Annie Harding for typing the original
manuscript and David Leonard for assistance in preparing the figures.
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Chapter 1

Chaos and Irreversibility

In contrast to the manifest irreversibility of nearly all systems we observe in
nature, the basic dynamical laws of physics, be they classical or quantum, are
time reversible. It has been a long-standing problem in physics to reconcile
these two facts. The recent realization that unstable or chaotic dynamical
systems are the most typical in nature has given fresh insight into this prob-
lem. We begin in this chapter with an informal discussion of the relation of
unstable dynamics to the problem of irreversibility. We then discuss some
general aspects of the evolution of probability densities in chaotic systems.

1.1 Irreversibility and Complexity

Traditional approaches to the explanation of irreversibility have always in-
cluded extra-mechanical elements, such as coarse graining, which are diffi-
cult to justify and introduce subjectivity into the description of the time
evolution of systems. These extra-mechanical elements have been consid-
ered necessary because the evolution laws for trajectories (or wavefunctions)
are time reversible and the operators describing the evolution of ensembles
are unitary so that time-oriented eigenmodes cannot be obtained in regular
functional spaces.

The main idea of the Prigogine school of nonequilibrium statistical me-
chanics is to extend the formulation of the laws of dynamics to include irre-
versiblity on the fundamental level. This goal was inspired by the realization
that irreversible processes are ubiquitous in nature and play a constructive
role on many levels. Quoting from Prigogine’s book From Being to Becom-
ing: “Irreversibility corresponds not to some supplementary approximation
introduced into the laws of dynamics but to an embedding of dynamics
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within a vaster formalism.” Of course, this new formalism should reduce to
the well-known reversible laws of dynamics for simple systems displaying,
for example, periodic motion, such as harmonic oscillation or two-body at-
tractive central force motion. Irreversibility should occur only if the system
is sufficiently complex.

Complex behavior has traditionally been associated with systems of many
degrees of freedom. As all statistical mechanics textbooks state: to solve
Hamilton’s equations for a system of IV interacting particles, where N corre-
sponds to a macroscopic sample so that N 2 10?3, is a hopelessly complicated
task. In practice one then considers not the set of trajectories of the particles
but a statistical description involving an ensemble distribution. From the
point of view of describing the macroscopic behavior of a system, especially
in equilibrium situations, this approach is generally valid since such behav-
ior usually doesn’t depend on details of the microscopic motions. If though
one would like to understand the emergence of irreversible behavior from
reversible microscopic dynamics, the bridge between these levels requires
deeper considerations.

As is now well known, it is by no means necessary for a system to have
many degrees of freedom to exhibit “complex” behavior. For a discrete time
system, only one degree of freedom is necessary for chaotic behavior. Chaos
means that the system displays “sensitivity to initial conditions.” This means
that two closely-spaced initial trajectories will spread exponentially in time
under the dynamics.

Why should chaos be related to irreversibility? Let us quote David Ru-
elle from his book Chaotic Evolution and Strange Attractors. Speaking of
chaos he states that “...the exponential growth of errors makes the time evo-
lution self-independent from its past history and then nondeterministic in
any practical sense.” This statement certainly suggests that the applicability
of time-reversiblity for a system whose evolution makes it self-independent
from its past is in doubt. But Ruelle implies that this problem is only of
a practical nature. For us, chaos leads to a formulation of dynamics tran-
scending traditional theoretical approaches and allows for an understanding
of irreversibility as an intrinsic property of chaotic systems.

A simple picture of chaotic evolution associated with diverging trajecto-
ries doesn’t tell the whole story. In fact, the phase space of strongly chaotic
systems in general has points (i.e., initial conditions) leading to regular (pe-
riodic) motion densely distributed among points leading to chaotic motion.
(See Appendix A.1 for more on this.) This is in contrast to stable systems
where different types of motion occur in finite regions of phase space with
distinct boundaries between the regions.
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The complex motion in chaotic systems naturally generates densities on
the phase space. (If we follow the motion of a typical trajectory for a long
time it will wander all over the chaotic region with the relative time spent
in various parts of the region yielding a density, i.e., we consider ergodic
systems — more about this later.) An initial nonequilibrium density may
correspond to some uncertainty in the specification of the initial condition
or may be thought of as representing an ensemble of systems with different
initial conditions. A smooth density is supported on a finite region of phase
space and so its evolution contains some non-local information that is missing
in a point dynamical description.

For stable systems exhibiting regular motion the description of the dy-
namics in terms of the evolution of a density is generally reducible to a point
density corresponding to an evolving trajectory. This is because in such a
system the density may sample a region containing only one typical kind of
trajectory behavior. For example, if for a pendulum we consider a smooth
density supported on a region away from the separatrix we may reduce the
density successively to a typical point in its support without a qualitative
change in its behavior. But for chaotic systems the reduction from a smooth
density corresponding to a statistical ensemble to a point density is wrought
with inherent difficulties because the complex microstructure in phase space
doesn’t allow for an unambiguous limit. Quoting from Prigogine again: “Is
this difficulty practical or theoretical in nature? I would support the view
that this result has important theoretical and conceptual significance be-
cause it forces us to transgress the limits of a purely dynamical description.”
As we will see, the natural description for the time evolution in chaotic sys-
tems will be in terms of densities that are irreducible to trajectories. This
representation of the time evolution operator involves generalized functional
spaces. This will yield an intrinsically irreversible description for systems
that nevertheless have time-reversible trajectory dynamics.

1.2 Densities in Chaotic Maps

In this book we are going to concentrate on the analysis of chaotic maps.
Maps are discrete-time dynamical processes that may arise in several differ-
ent contexts. A map may arise directly from the statement of a physical
problem; for instance, a system that is kicked periodically and follows free
motion between kicks. A map may also be constructed by taking a slice
in phase space of a continuous-time system. Our interest in chaotic maps
is that they are the simplest systems that have relevant features of chaotic
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Hamiltonian systems. We use them as models to explore the dynamics and
statistical mechanics of chaotic systems.

A map is specified by a dynamical law that determines how an initial
point, g, evolves. (The dimension of the space of points to which = belongs
may be greater than 1.) The map tells how to evolve one time step and to get
t steps we apply an iterative procedure; thus, z; = S(z¢—1) = S(S(zt—2)) =

- = Si(xp), where S is the rule for the map. This procedure yields a
trajectory for the system. There now exists a huge literature on trajectory
dynamics in chaotic systems. The principal characterization of chaotic tra-
jectory dynamics is given by the values of the positive Lyapunov exponents,
which determine the rate of exponential spreading of nearby trajectories.

An alternative picture of the dynamics may be obtained from a statistical
mechanics approach by considering an ensemble description. If we pick N
initial points: z,x%,...,zY and apply the map to each point we obtain N
new points: xi,2%,..., 2. A density, p(z,t), at time step ¢, will describe
this ensemble of NV points if

/ dz p(z, t) ZXA(% (1.1)

where

is the characteristic function of a small set A.

To determine the rule for the evolution of densities given the rule for
points (i.e., trajectories) consider the evolution of a density corresponding to
a trajectory. The point zg evolving to S(zg) after one iteration is equivalent
to the singular density described by a Dirac delta function, 6 (x—xg), evolving
to 6(z — S(zp)). The new density may be written in terms of the original
one as

§(z — /dm §(z — S(z'))6(z' — ). (1.2)

The evolution of a smooth density may be obtained then just by superposi-
tion. Since p(z,t) = [dxod(x — xo)p(zo,t) we obtain

plz,t+1) = /dx'é(:c — S(@"))p(a', t) = Up(z,t), (1.3)

where we have defined the operator U, called the Frobenius—Perron operator,
which evolves densities. Thus, in order to obtain the density at time ¢ from
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an initial density at time ¢t = 0 the Frobenius—Perron operator is applied ¢
times as p(z,t) = Ulp(z,0).

A very important fact we may notice immediately is that U is a linear
operator. This is in contrast to the trajectory evolution which proceeds by
an iterative process that is highly nonlinear. We may thus employ linear op-
erator theory to study chaotic dynamics from the point of view of evolving
densities. Even though the evolution of a density is determined by superpos-
ing trajectories, we will see later that we may nevertheless construct spectral
decompositions of U that are irreducible to trajectories.

The behavior of trajectories and densities in a given system may be
strikingly different. For a uniformly chaotic system a typical trajectory will
wander around in the phase space in an apparently random fashion. Even in
systems with non-invertible trajectory dynamics, a time series of the trajec-
tory may look qualitatively similar forward or backward in time. In contrast,
the evolution of a density will usually be obviously time-oriented and will
often approach an attracting equilibrium state. These two types of behavior
are illustrated in Figures 1.1 and 1.2 for the simple example of the one-
dimensional dyadic Bernoulli map on the interval [0, 1). This system will be
studied in detail in Chapter 3.

We note then a somewhat complementary character of trajectories versus
densities. For a system with very chaotic or irregular trajectory behavior
the density will normally show a quite regular behavior. On the other hand,
for regular motion, such as periodic trajectories, the density behavior will
generally mirror the trajectory behavior.

Discussions of the approach to equilibrium in simple chaotic systems are
not very prevalent in the literature. In many places where the Frobenius—
Perron operator is discussed it is used just to obtain the invariant density
of the system. In fact, many authors discuss invariant densities and even
show pictures of them generated numerically and comment how they were
obtained “after neglecting transients.” For us the so-called transients are our
main interest.

1.3 Types of Behavior in Phase Space

The dynamics of a system in phase space may be classified according to its
behavior over long times. A hierarchy of behavior may be identified and
the Frobenius-Perron operator is useful for the classification. In the next
chapter we will discuss in more detail how to do statistical mechanics of
chaotic maps. For the present discussion it is only necessary to know that



