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Preface

A wide variety of natural phenomena can be modeled as planar dynami-
cal systems with motions that may exhibit deterministically or stochastically
induced transitions, that is, escapes from and captures into distinct regions
in which the systems’ motions can evolve. For example, the rolling motion
of a vessel may escape from a safe region and be captured into a region
wherein capsizing occurs. Mathematically, the transitions entail the crossing
of barriers between potential wells.

The Melnikov method provides necessary conditions for the occurrence of
such transitions, as well as useful insights into how the transitions are affected
by the system and excitation characteristics. It provides a unified treatment of
deterministic systems, systems with various types of stochastic excitation—
additive, state dependent, white, colored, Gaussian, continuously distributed
non-Gaussian, or dichotomous—and systems with combinations of determin-
istic and stochastic excitation. It has wide-ranging application in science and
engineering: in this book alone examples of applications range from physics
to mechanical engineering, naval architecture, oceanography, nonlinear con-
trol, stochastic resonance, and neurophysiology. It is an effective tool for
modeling complex dynamical systems. It allows a chaotic dynamics interpre-
tation of stochastically induced transitions. Last but not least, it is elegant
and transparent.

This book is designed to introduce the Melnikov method to readers inter-
ested primarily in applications. Prerequisites for the development of stochas-
tic Melnikov theory are (1) deterministic Melnikov theory and (2) basic
elements of the theory of stochastic processes. Therefore, following an intro-
duction (Chapter 1), Melnikov theory is presented in a deterministic context,
first as a tool applicable to motions with transitions in planar systems, with-
out reference to chaotic dynamics (Chapter 2), then in relation to the chaotic
nature of such motions (Chapter 3). These chapters are designed for readers
with no previous exposure to dynamical systems theory. Chapter 4 presents
requisite elements of the theory of stochastic processes. Based on material
presented in Chapters 2, 3, and 4, Chapter 5 extends Melnikov theory to
motions with transitions in stochastic planar systems. Chapters 2 through 5
form Part 1 of the book and are devoted to fundamentals. Part 2 consists of
Chapters 6 through 12 and is devoted to applications.



Xii PREFACE

The material of Chapters 2 to 4 allows readers not familiar with the the-
ory of nonlinear dynamical systems and/or the theory of stochastic processes
to acquire the background needed for the applications without having to
resort to a mass of specialized texts less focused with respect to the material
specifically needed in this book and more elaborate mathematically. The fun-
damental material presented in Chapter 3 can be omitted on a first reading
as it is not used in all applications. It is needed, however, for understand-
ing the chaotic behavior of the systems being studied, in particular systems
exhibiting stochastic resonance.

One of the themes emerging from this book is the hitherto virtually unex-
plored relationship between chaotic and stochastic dynamics. To our knowl-
edge this contains the first published material that deals with this relationship
and explains it within the framework of Melnikov theory.

In Part 2 of the book each of the chapters is concerned with a particular
type of application and can be read independently of the others. Material cov-
ered in the Appendixes may be omitted on a first reading with no significant
prejudice to the reader’s ability to apply the method’s basic results.

The book is to a large extent self-contained, and numerous references are
provided for basic material and additional details. Prerequisites for the book
are the equivalent of a first-year graduate course in applied mathematics,
including systems of linear differential equations. Laborious mathematical
derivations were kept to a minimum, with a few exceptions: the derivation
of the expression for the Melnikov function (Chapter 2 and Appendix Al),
and the material on the Smale horseshoe map and the shift map (Chap-
ter 3), which convincingly reveals the essence and beauty of chaotic
dynamics.

I am indebted to Dr. John W. Lyons and Dr. Richard N. Wright of the
National Institute of Standards and Technology for their steadfast support of
my initial efforts in the field of chaotic dynamics, and to Professor Stephen
Wiggins of the California Institute of Technology for his encouragement
and helpful advice during the initial phases of my research. Support by the
Ocean Engineering Division of the Office of Naval Research (Dr. Steven
Ramberg, Dr. Michael Shlesinger, and Dr. Tom Swean) is also acknowledged
with thanks. Dr. Michael R. Frey and Dr. Marek Franaszek contributed
many original and stimulating ideas to the research covered in this book.
Their contributions are gratefully acknowledged, as are those of Dr. Graham
R. Cook, Dr. Charles Hagwood, and Dr. Yudaya Sivathanu. I am also grateful
to Dr. Kevin J. Coakley, Professor Mircea Grigoriu, Dr. Howland A. Fowler,
Dr. Agnessa Kovaleva, Dr. David Sterling, and Professor Timothy M.
Whalen, and to the Princeton University Press reviewers, for many valuable
comments and criticisms. It is a pleasure to acknowledge the professionalism
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and helpfulness of Mr. Trevor Lipscombe, Mr. David Ireland, and Ms. Vickie
Kearn (editors), Ms. Anne Reifsnyder (production editor), and Ms. Jennifer
Slater, of Princeton University Press.

I dedicate this book to Devra.
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Chapter One

Introduction

This work has two main objectives: (1) to present the Melnikov method
as a unified theoretical framework for the study of transitions and chaos in
a wide class of deterministic and stochastic nonlinear planar systems, and
(2) to demonstrate the method’s usefulness in applications, particularly for
stochastic systems. Our interest in the Melnikov method is motivated by its
capability to provide criteria and information on the occurrence of transitions
and chaotic behavior in a wide variety of systems in engineering, physics,
and the life sciences.

To illustrate the type of problem to which the Melnikov method is appli-
cable we consider a celebrated experiment on a system known as the magne-
toelastic beam. The experiment demonstrates the remarkable type of dynamic
behavior called deterministic chaos (Moon and Holmes, 1979). The system
consists of (a) a rigid frame fixed onto a shaking table that may undergo
periodic horizontal motions, (b) a beam with a vertical undeformed axis, an
upper end fixed onto the frame, and a free lower end, and (c) two identical
magnets equidistant from the undeformed position of the beam (Fig. 1.1).
The beam experiences nonlinear displacement-dependent forces induced by
the magnets, linear restoring forces due to its elasticity, dissipative forces
due to its internal friction, the viscosity of the surrounding air, and mag-
netic damping, and periodic excitation forces due to the horizontal motion of
the shaking table. Neither the system properties nor the forces acting on the
beam vary randomly with time: the system is fully deterministic.

In the absence of excitation, and depending upon the initial conditions, the
beam settles on one of two possible stable equilibria, that is, with the beam’s
tip closer to the right magnet or closer to the left magnet. The beam also has
an unstable equilibrium position—its vertical undeformed axis.

If the excitation is periodic, three distinct types of steady-state dynamic
behavior can occur:

1. For sufficiently small excitations, depending again upon the initial
conditions, the beam moves periodically about one of its two stable
equilibria. The periodic motion is confined to a half-plane bounded by
the beam’s unstable equilibrium position (Fig. 1.2(a)); in this type of
motion there can be no escape from that half-plane.
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Figure 1.1. The magnetoelastic beam (after Moon and Holmes, 1979).
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Figure 1.2. Types of steady-state dynamic behavior that may be observed in the
periodically excited magnetoelastic beam: (a) periodic motion confined to one of the
half-planes bounded by the beam’s unstable equilibrium position; (b) periodic motion
visiting both half-planes; (c) irregular motion with transitions.
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2. For sufficiently large excitations the motion is periodic about—and
crosses periodically—the unstable equilibrium position (Fig. 1.2(b)).

3. For intermediate excitation amplitudes, and for restricted sets of initial
conditions and excitation frequencies, the steady-state motion is irregu-
lar, even though the system is fully deterministic; hence the term deter-
ministic chaos. The motion evolves about one of the three equilibria,
then it undergoes successive transitions, that is, it changes successively
to motion about one of the other two equilibria (Fig. 1.2(c)). Transi-
tions in such irregular, deterministic motion are referred to as chaotic.
A transition away from motion in a half-plane bounded by the beam’s
unstable equilibrium position is called an escape. A transition to motion
occurring within such a half-plane is called a capture. A succession of
escapes and captures is referred to as hopping.

The system just described may be modeled as a dynamical system—a
system that evolves in time in accordance with a specified mathematical
expression. In this book we are primarily concerned with dynamical systems
capable of exhibiting all three types of behavior illustrated in Fig. 1.2. One
basic feature of such systems is that they are multistable, meaning that their
unforced counterparts have at least two stable equilibria (the term applied
to the case of two stable equilibria is bistable). In the particular case of
mechanical systems, the dynamic behavior is modeled by nonlinear differen-
tial equations expressing a relationship among terms that represent

* inertial forces

* dissipative forces

* potential forces, that is, forces derived from a potential function and
dependent solely upon displacements; for Fig. 1.1 these forces are due
to the magnets and the elasticity of the beam

* excitation forces dependent explicitly on time

Similar terms occur in equations modeling other types of dynamical system,
for example, electrical, thermal, or chemical systems.

For a large number of systems arising in engineering or physics safe opera-
tion requires that steady-state motions occur within a restricted region, called
a safe region (in Fig. 1.2(a), the displacement coordinates in the restricted
regions are bounded by the vertical line that coincides with the axis of the
undeformed beam); transitions to motions visiting another region are unde-
sirable. However, for some systems (e.g., systems that enhance heat transfer,
and neurological systems whose activity entails escapes or, in neurologi-
cal terminology, firings) the occurrence of such transitions is a functional
requirement.

Although we will also examine systems with a slowly varying third vari-
able, our main focus will be on planar systems, that is, continuous systems



