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Preface

It is our hope that this book will serve both as a textbook for graduate courses on
stability of structures and a reference volume for engineers and scientists. We
assume the student has a background in mathematics and mechanics only at the
level of the B.S. degree in civil or mechanical engineering, though in the last four
chapters we assume a more advanced background. We cover subjects relevant to
civil, structural, mechanical, aerospace, and nuclear engineering, as well as
materials science, although in the first half of the book we place somewhat more
emphasis on the civil engineering applications than on others. We include many
original derivations as well as some new research results not yet published in
periodicals.

Our desire is to achieve understanding rather than just knowledge. We try to
proceed in each problem from special to general, from simple to complex,
treating each subject as concisely as we can and at the lowest possible level of
mathematical apparatus we know, but not so low as to sacrifice efficiency of
presentation. We include a large number (almost 700) of exercise problems.
Solving many of them is, in our experience, essential for the student to master the
subject.

In some curricula, the teaching of stability is fragmented into courses on
structural mechanics, design of steel structures, design of concrete structures,
structural dynamics, plates and shells, finite elements, plasticity, viscoelasticity,
and continuum mechanics. Stability theory, however, stands at the heart of
structural and continuum mechanics. Whoever understands it understands
mechanics. The methods of stability analysis in various applications are similar,
resting on the same principles. A fundamental understanding of these principles,
which is not easy to acquire, is likely to be sacrificed when stability is taught by
bits, in various courses. Therefore, in our opinion, it is preferable to teach
stability in a single course, which should represent the core of the mechanics
program in civil, mechanical, and aerospace engineering.

Existing textbooks of structural stability, except for touching on elastoplastic
columns, deal almost exclusively with elastic stability. The modern stability
problems of fracture and damage, as well as the thermodynamic principles of
stability of irreversible systems, have not been covered in textbooks. Even the
catastrophe theory, as general is it purports to be, has been limited to systems
that possess a potential, which implies elastic behavior. Reflecting recent research
results, we depart from tradition, devoting about half of the book to nonelastic
stability.

Various kinds of graduate courses can be fashioned from this book. The
first-year quarter-length course for structural engineering students may, for
example, consist of Sections 1.2-1.7, 2.1-2.4, 2.8, 3.1, 3.2, 3.5, 3.6, 4.2-4.6,
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5.1-5.4, 6.1-6.3, 7.1-7.3, 7.5, 7.8, 8.1, 8.3, and 8.4, although about one-third of
these sections can be covered in one quarter only partly. A semester-length
course can cover them fully and may be expanded by Sections 1.8, 1.9, 2.7, 3.3,
4.5, 4.6, 5.5, 7.4, 7.8, 8.2, and 8.6. The first-year course for mechanical and
aerospace engineers may, for example, be composed of Sections 1.1-1.5, 1.7, 1.9,
2.1-2.3, 3.1-3.7, 4.2-4.6, 5.1-5.4, 6.1-6.3, 7.1-7.3, 7.5, 7.8, 8.1-8.3, and
9.1-9.3, again with some sections covered only partly. A second-year sequel for
structural engineering students, dealing with inelastic structural stability, can, for
example, consist of Sections 8.1-8.6, 9.1-9.6, 10.1-10.4, 13.2-13.4, and 13.6,
preceded as necessary by a review of some highlights from the first course.
Another possible second-year sequel, suitable for students in theoretical and
applied mechanics, is a course on material modeling and stability, which can be
set up from Sections 11.1-11.7, 10.1-10.6, 13.1-13.4, 13.8-13.10, and 12.1-12.5
supplemented by a detailed explanation of a few of the constitutive models
mentioned in Section 13.11. A course on Stability of Thin-Wall Structures
(including plates and shells) can consist of a review of Sections 1.1-1.8 and
detailed presentation of Chapters 6 and 7. A course on Inelastic Columns can be
based on a review of Sections 1.1-1.8 and detailed presentation of Chapters 8 and
9. A course on Stability of Multidimensional Structures can be based on a review
of Sections 1.1-1.9 and detailed presentation of Chapters 7 and 11. A course on
Energy Approach to Structural Stability can be based on a review of Sections
1.1-1.8 and detailed presentation of Chapters 4, 5, and 10. A course on Buckling
of Frames can be based on Chapters 1, 2, and 3. Chapter 3, along with Section
8.6, can serve as the basis for a large part of a course on Dynamic Stability.

The present book grew out of lecture notes for a course on stability of
structures that Professor BaZant has been teaching at Northwestern University
every year since 1969. An initial version of these notes was completed during
Bazant’s Guggenheim fellowship in 1978, spent partly at Stanford and Caltech.
Most of the final version of the book was written during Professor Cedolin’s
visiting appointment at Northwestern between 1986 and 1988, when he enriched
the text with his experience from teaching a course on structural analysis at
Politecnico di Milano. Most of the last six chapters are based on BaZant’s lecture
notes for second-year graduate courses on inelastic structural stability, on
material modeling principles, and on fracture of concrete, rock, and ceramics.
Various drafts of the last chapters were finalized in connection with BaZant’s stay
as NATO Senior Guest Scientist at the Ecole Normale Supérieure, Cachan,
France, and various sections of the book were initially presented by BaZant
during specialized intensive courses and guest seminars at the Royal Institute of
Technology (Cement och Betonginstitutet, CBI), Stockholm; Ecole des Ponts et
Chaussées, Paris; Politecnico di Milano; University of Cape Town; University of
Adelaide; University of Tokyo; and Swiss Federal Institute of Technology.
Thanks go to Northwestern University and the Politecnico di Milano for
providing environments conducive to scholarly pursuits. Professor BaZant had the
good fortune to receive financial support from the U.S. National Science
Foundation and the Air Force Office of Scientific Research, through grants to
Northwestern University; this funding supported research on which the last six
chapters are partly based. Professor BaZant wishes to express his thanks to his
father, Zden¢k J. Bazant, Professor Emeritus of Foundation Engineering at the
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Czech Technical University (CVUT) in Prague and to his grandfather, Zden&k
Bazant, late Professor of Structural Mechanics at CVUT, for having introduced
him to certain stability problems of structural and geotechnical engineering.

We are indebted for many detailed and very useful comments to Leone
Corradi and Giulio Maier, and for further useful comments to several colleagues
who read parts of the text: Professors J. P. Cordebois, S. Dei Poli, Eduardo
Dvorkin, Theodore V. Galambos, Richard Kohoutek, Franco Mola, Brian
Moran, and Jaime Planas. Finally, we extend our thanks to M. Tabbara, R.
Gettu, and M. T. Kazemi, graduate research assistants at Northwestern Univer-
sity, for checking some parts of the manuscript and giving various useful
comments, to Vera Fisher for her expert typing of the manuscript, and to
Giuseppe Martinelli for his impeccable drawings.

Evanston, Il Z.P.B.and L. C.
October, 1989



Introduction

One of the principal objectives of theoretical research in any
department of knowledge is to find the point of view from
which the subject appears in its greatest simplicity.

—J. Willard Gibbs

(acceptance letter of Rumford Medal, 1881)

Failures of many engineering structures fall into one of two simple categories: (1)
material failure and (2) structural instability. The first type of failure, treated in
introductory courses on the strength of materials and structural mechanics, can
usually be adequately predicted by analyzing the structure on the basis of
equilibrium conditions or equations of motion that are written for the initial,
undeformed configuration of the structure. By contrast, the prediction of failures
due to structural instability requires equations of equilibrium or motion to be
formulated on the basis of the deformed configuration of the structure. Since the
deformed configuration is not known in advance but depends on the deflections to
be solved, the problem is in principle nonlinear, although frequently it can be
linearized in order to facilitate analysis.

Structural failures caused by failure of the material are governed, in the
simplest approach, by the value of the material strength or yield limit, which is
independent of structural geometry and size. By contrast, the load at which a
structure becomes unstable can be, in the simplest approach, regarded as
independent of the material strength or yield limit; it depends on structural
geometry and size, especially slenderness, and is governed primarily by the
stiffness of the material, characterized, for example, by the elastic modulus.
Failures of elastic structures due to structural instability have their primary cause
in geometric effects: the geometry of deformation introduces nonlinearities that
amplify the stresses calculated on the basis of the initial undeformed configuration
of the structure.

The stability of elastic structures is a classical problem which forms the
primary content of most existing textbooks. We will devote about half the present
treatise to this topic (Part I, Chapters 1-7).

We begin our study of structural stability with the analysis of buckling of
elastic columns and frames, a bread-and-butter problem for structural engineers.
Although this is a classical research field, we cover in some detail various recent
advances dealing with the analysis of very large regular frames with many
members, which are finding increasing applications in tall buildings as well as
certain designs for space structures.

The study of structural stability is often confusing because the definition of
structural stability itself is unstable. Various definitions may serve a useful

XXi
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purpose for different problems. However, one definition of stability—the dynamic
definition—is fundamental and applicable to all structural stability problems.
Dynamic stability analysis is essential for structures subjected to nonconservative
loads, such as wind or pulsating forces. Structures loaded in this manner may
falsely appear to be stable according to static analysis while in reality they fail
through vibrations of ever increasing amplitude or some other accelerated
motion. Because of the importance of this problem in modern structural
engineering we will include a thorough treatment of the dynamic approach to
stability in Chapter 3. We will see that the static approach yields correct critical
loads only for conservative structural systems, but even for these it cannot answer
the question of stability completely.

The question of stability may be most effectively answered on the basis of the
energy criterion of stability, which follows from the dynamic definition if the
system is conservative. We will treat the energy methods for discrete and
discretized systems in Chapter 4 and those for continuous structures in Chapter 5,
in which we will also focus on the approximate energy methods that simplify the
stability analysis of continuous structures.

In Chapters 6 and 7 we will apply the equilibrium and energy methods to
stability analysis of more complicated thin structures such as thin-wall beams, the
analysis of which can still be made one-dimensionally, and of two-dimensional
structures such as plates and shells. Because many excellent detailed books deal
with these problems, and also because the solution of these problems is tedious,
requiring lengthy derivations and mathematical exercises that add little to the
basic understanding of the behavior of the structure, we limit the treatment of
these complex problems to the basic, prototype situations. At the same time we
emphasize special features and approaches, including an explanation of the direct
and indirect variational methods, the effect of imperfections, the postcritical
behavior, and load capacity. In our computer era, the value of the complicated
analytical solutions of shells and other thin-wall structures is diminishing, since
the solutions can be obtained by finite elements, the treatment of which is outside
the scope of the present treatise.

While the first half of the book (Part I, Chaps. 1-7) represents a fairly
classical choice of topics and coverage for a textbook on structural stability, the
second half of the book (Part II, Chaps. 8-13), devoted to inelastic and damage
theories of structural stability, attempts to synthesize the latest trends in research.
Inelastic behavior comprises not only plasticity (or elastoplasticity), treated in
Chapters 8 and 10, but also creep (viscoelastic as well as viscoplastic), treated in
in Chapter 9, while damage comprises not only strain-softening damage, treated
in Chapter 13, but also fracture, which represents the special or limiting case of
localized damage, treated in Chapter 12. Whereas the chapters dealing with
plasticity and creep present for the most part relatively well-established theories,
Chapters 10-13, dealing with thermodynamic concepts and finite strain effects in
three dimensions, as well as fracture, damage, and friction, present mostly fresh
results of recent researches that might in the future be subject to reinterpretations
and updates.

Inelastic behavior tends to destabilize structures and generally blurs the
aforementioned distinction between material failures and stability failures. Its
effect can be twofold: (1) it can merely reduce the critical load, while instability is
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still caused by nonlinear geometric effects and cannot occur in their absence—this
is typical of plasticity and creep (with no softening or damage); or (2) it can cause
instability by itself, even in the absence of nonlinear geometric effects in the
structure—this is typical of fracture, strain-softening damage, and friction and
currently represents a hot research subject. An example of this behavior is
fracture mechanics. In this theory (outlined in Chapter 12), structural failure is
treated as a consequence of unstable crack propagation, the instability being
caused by the global structural action (in which the cause of instability is the
release of energy from the structure into the crack front) rather than the
nonlinear geometric effects.

Stability analysis of structures that are not elastic is complicated by the fact
that the principle of minimum potential energy, the basic tool for elastic
structures, is inapplicable. Stability can, of course, be analyzed dynamically, but
that too is complicated, especially for inelastic behavior. However, as we will see
in Chapter 10, energy analysis of stability is possible on the basis of the second
law of thermodynamics. To aid the reader, we will include in Chapter 10 a
thorough discussion of the necessary thermodynamic principles and will then
apply them in a number of examples.

Irreversibility, which is the salient characteristic of nonelastic behavior,
produces a new phenomenon: the bifurcation of equilibrium path need not be
associated with stability loss but can typically occur in a stable manner and at a
load that is substantially smaller than the stability limit. This phenomenon, which
is not found in elastic structures, will come to light in Chapter 8 (dealing with
elastoplastic columns) and will reappear in Chapters 12 and 13 in various
problems of damage and fracture. A surprising feature of such bifurcations is that
the states on more than one postbifurcation branch of the equilibrium path can be
stable, which is impossible for elastic structures or reversible systems in general.
To determine the postbifurcation path that will actually be followed by the
structure, we will need to introduce in Chapter 10 a new concept of stable path,
which, as it turns out, must be distinct from the concept of stable state. We will
present a general thermodynamic criterion that makes it possible to identify the
stable path.

The stability implications of the time-dependent material behavior, broadly
termed creep, also include some characteristic phenomena, which will be
explained in Chapter 9. In dealing with imperfect viscoelastic structures under
permanent loads, we will have to take into account the asymptotic deflections as
the time tends to infinity, and we will see that the long-time (asymptotic) critical
load is less than the instantaneous (elastic) critical load. In imperfect viscoelastic
structures, the deflections can approach infinity at a finite critical time, and can
again do so under a load that is less than the instantaneous critical load. For creep
buckling of concrete structures, we will further have to take into account the
profound effect of age on creep exhibited by this complex material.

The most important consequence of the instabilities caused by fracture or
damage rather than by geometric effects is that they produce size effect, that is,
the structure size affects the nominal stress at failure. By contrast, no size effect
exists according to the traditional concepts of strength, yield limit, and yield
surface in the stress or strain space. Neither does it according to elastic stability
theory. The most severe and also the simplest size effect is caused by failures due
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to propagation of a sharp fracture where the fracture process happens at a point.
A less severe size effect, which represents a transition from failures governed by
strength or yield criteria to failures governed by instability of sharp fractures, is
produced by instability modes consisting either of propagation of a fracture with a
large fracture process zone (Chap. 12) or of damage localization (Chap. 13). As a
special highlight of the present treatise, these modern problems are treated in
detail in the last two chapters.

The practical design of metallic or concrete columns and other structures is an
important topic in any stability course. In this text, the code specifications and
design approaches are dispersed through a number of chapters instead of being
presented compactly in one place. This presentation is motivated by an effort to
avoid a cookbook style and present each aspect of design only after the pertinent
theory has been thoroughly explained, but not later than that. It is for this
reason, and also because fundamental understanding of inelastic behavior is
important, that the exposition of column design is not completed until Chapters 8
and 9, which also include detailed critical discussions of the current practice.

The guiding principle in the presentation that follows is to advance by
induction, from special and simple to general and complex. This is one reason
why we choose not to start the book with general differential equations in three
dimensions and thermodynamic principles, which would then be reduced to
special cases. (The general three-dimensional differential equations governing
stability with respect to nonlinear geometric effects do not appear in the book
until Chap. 11.) There is also another reason—the three-dimensional analysis of
stability is not necessary for slender or thin structures made of structural materials
such as steel or concrete, which are relatively stiff. It is only necessary for dealing
with incremental deformations of massive inelastic structures or structures made
of highly anisotropic or composite materials which can be strained to such a high
level that some of the tangential moduli of the material are reduced to values that
are of the same order of magnitude as the stresses.

As another interesting phenomenon, which we will see in Chapter 11, various
possible choices of the finite-strain tensor lead to different expressions for the
critical loads of massive bodies. It turns out that the stability formulations
corresponding to different choices of the finite-strain tensor are all equivalent, but
for each such formulation the tangential moduli tensor of the material has a
different physical meaning and must be determined from experimental data in a
different manner. If this is not done, then three-dimensional finite-strain stability
analysis makes no sense.

As we live in the new era of computers, stability of almost any given structure
could, at least in principle, be analyzed by geometrically nonlinear finite element
codes with incremental loading. This could be done in the presence of complex
nonlinear behavior of the material as well. Powerful though this approach is, the
value of simple analytical solutions that can be worked out by hand must not be
underestimated. This book attempts to concentrate on such solutions. It is these
solutions that enhance our understanding and also must be used as test cases for
the finite element programs.
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