=

L

‘(.-ﬁ" *

Design ol
m el M jvstems

& j

?vliu:im(i@ntroﬂers

RICHARD E. HASKELL

Design of Embedded
Systems Using 68HC12/ 11
Microcontrollers

Richard E. Haskell

Computer Science and Engineering Department
Oakland University
Rochester, Michigan 48309

Prentice -

il PRENTICE HALL
s Upper Saddle River, NJ 07458

Library of Congress Cataloging-in-Publication Data

Haskell, Richard E.
Design of embedded systems using 68HC12/11 microcontrollers /
Richard E. Haskell
p. cm.
ISBN 0-13-083208-1 (pbk.)
1. Embedded computer systems—Design and construction.
2. Motorola 68HC11 (Microprocessor)
TK7895.E42H38 1999
004.2'1—dc21 99-16964
CIP

Publisher: Tom Robbins

Associate editor: Alice Dworkin
Production editor: Audri Anna Bazlen
Editor-in-chiefl: Marcia Horton

Executive managing editor: Vince O'Brien
Assistant managing editor: Eileen Clark
Vice-president of production and manufacturing: David W. Riccardi
Art director: Jayne Conte

Cover design: Bruce Kenselaar
Manulacturing buyer: Pat Brown
Marketing manager: Danny Hoyt
Editorial assistant: Dan DePasquale

© 2000 by Prentice Hall
3|l Prentice-Hall, Inc.
el Upper Saddle River, New Jersey 07458

Prentice

All rights reserved. No part of this book may be reproduced. in any form or by any means, without permission in
writing from the publisher.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The author and
publisher make no warranty of any kind. expressed or implied, with regard to these programs or the documentation
contained in this book. The author and publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or usc of these programs.

Printed in the United States of America
1009 8 7 6 5 4 3 21

ISBN 0-13-083208-1

Prentice-Hall International (UK) Limited, London -
Prentice-Hall of Australia Pty. Limited, Sydney -
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico

Prentice-Hall of India Private Limited, New Delhi

Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall (Singapore) Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Design of Embedded
Systems Using 68HC12/11
Microcontrollers

To Edie

Preface

Many people think of a computer as a PC on a desk with a keyboard and video mon-
itor. However, most of the computers in the world have neither a keyboard nor a
video monitor. Rather they are small microcontrollers—a microprocessor, memory,
and 1/0O all on a single chip—that are embedded in a myriad of other products such
as automobiles, televisions, VCRs, cameras, copy machines, cellular telephones,
vending machines, microwave ovens, medical instruments, and hundreds of addi-
tional products of all kinds. This book is about how to program microcontrollers and
use them in the design of embedded systems.

A popular microcontroller that has been used in a wide variety of different
products is the Motorola 68HCI11. Motorola has recently introduced an upgrade of
this microcontroller, the 68HC12, that has new, more powerful instructions and ad-
dressing modes. This book emphasizes the use of the 68HC12 while at the same time
providing information about the 68HC11. It can therefore be used in courses that
use both 68HC12 and 68HC11 microcontrollers.

This book is the result of teaching various microcomputer interfacing courses
over the past 20 years. While the technology may change, the basic principles of
microcomputer interfacing remain largely the same and these basic principles are
stressed throughout this book. However, microcomputer interfacing is a subject that
is learned only by doing. The courses that I have taught using this material have all

XV

Xvi

Preface

been project-oriented courses in which the students design and build real micro-
computer interfacing projects.

A definite trend in microcomputer interfacing and in digital design in general
is a shift from hardware design to software design. Microcomputer interfacing has
always involved both hardware and software considerations. However. the increas-
ingly large-scale integration of the hardware together with sophisticated software
tools for designing hardware means that even traditional hardware design is becom-
ing more and more a software activity.

In the past most software for microcomputer interfacing has been written in
assembly language. This means that each time a new and better microprocessor
comes out the designer must first learn the new assembly language. The advantage
of assembly language is that it is “closest to the hardware™ and will allow the user to
do exactly what he or she wants in the most efficient manner. While some feel that
assembly language programs are more difficult to write and maintain than programs
written in a high-level language, the major disadvantage of assembly language pro-
grams is related to the obsolescence of the microprocessor—when upgrading to a
new or different microprocessor, all of the software has to be rewritten! Even when
upgrading from a 68HC11 to a 68HC12. which is upward compatible at the source-
code level, to get the best performance from the 68HC12 you will need to rewrite
the code to use the newer, more powerful instructions and addressing modes.

This has led to a trend of using high-level languages such as C or C++ for
microcomputer interfacing. While this helps to solve the obsolescence problem—
much of the same high-level code might be reusable with a new microprocessor—
high-level languages come with their own problems. The development environment
is not always the most convenient. One has to edit the program. compile it, load it.
and then run it to test it on the real hardware. This edit-compile-test cycle can be
very time consuming for large programs. Without sophisticated run-time debugging
tools the debugging of the program on real hardware can be very frustrating. When
designing microcomputer interfaces you would like to be as close to the hardware as
possible.

What you would like is a computer language with the advantages of both a
high-level language and assembly language, with none of the disadvantages. It
would be nice if the language were also interactive so that you could sit at your com-
puter terminal and literally “talk™ to the various hardware interfaces. The language
should also produce compact code so that you can easily embed the code in PROMS
or flash memory for a stand-alone system. While you're at it why not embed the en-
tire language in your target system so that you can develop your program “on-line™
and even upgrade the program in the field once the product is delivered. Impossible,
you say? In fact, just such a language exists for almost-any microprocessor you may
want to use. The language is Forth and we will use a derivative of it in this book to
illustrate how easy microcomputer interfacing can be.

We will use a unique version of Forth called WHY P (pronounced whip) that
is designed for use in embedded systems. WHYP stands for Words to Help You
Program. It is a subroutine threaded language which means that WHYP words are
just the names of 68HCI12(11) subroutines. New WHYP words can be defined
simplv by stringine previoushy defined WHYP words toocther

Preface

xvii

A unique feature of Forth—and WHYP—is its simplicity. It is a simple
language to learn, to use, and to understand. In fact. in this book we will develop the
entire WHYP language from scratch. We will see that WHYP consists of two parts—
some 68HC12 subrautines that reside on the target system (typically an evaluation
board) and a C+ + program that runs on a PC and communicates with the 68HC12
target system through a serial line. In the process of developing the WHYP subrou-
tines on the target system you will learn 68HC12 assembly language programming.
When you finish the book you will also know Forth. Previous knowledge of C++
will be helpful in understanding the C+ + portion of WHYP that resides on the PC.
The complete C+ + source code is included on the disk that accompanies this book
and in discussed in Chapters 16 and 17. However, these chapters are optional and
are not required in order to use WHYP to program the 68HC12.

You will discover that you can develop large software projects using WHYP in
a much shorter time than you could develop the same program in either assembly
language or C. You might be surprised at the number of industrial embedded sys-
tems projects that have been developed in Forth. Many small companies and con-
sultants that use Forth don't talk much about it because many consider it a compet-
itive advantage to be able to develop software in a shorter time than others who
program in assembly language or C.

In Chapter 1 you will learn about the architecture of the 68HC12 and how to
write a simple assembly language program. assemble it, download it to the target
board. and exccute it. You will see how to write 68HC12 subroutines in Chapter 2
where you will learn how the system stack works. We will then develop a separate
data stack. using the 68HC12 index register. X, as a stack pointer. This data stack will
be used throughout the book to pass parameters to and from our 68HC12 subrou-
tines (WHYP words). We will see in Chapter 2 that this makes it possible to access
our 68HC12 subroutines interactively, by simply typing the name of the subroutine
on the PC keyboard.

In Chapter 3 we will study 68HC12 arithmetic with emphasis on the new 16-bit
signed and unsigned multiplication and division instructions available on the
68HC12. We will use these instructions to create WHYP words for all of the arith-
metic operations.

The power of WHYP comes from the fact that you can define new WHYP
words in terms of previously defined words. This makes WHYP an extensible lan-
guage in which every time you write a WHYP program you are really extending the
language by adding new words to its dictionary. You will learn how to do this in
Chapter 4.

In Chapter 5 we will look at the 68HC12 branching and looping instructions
and see how we can use them to build some high-level WHYP branching and loop-
ing words such asan /F ... ELSE ... THEN construct and a FOR ... NEXT loop.
We will also sce in this chapter how we can do recursion in WHYP, that is, how we
can have a WHYP word call itself.

After the first five chapters you should have a good understanding of the
68HC 12 instructions and how they are used to create the WHYP language. The next
six chapters will use WHYP as a tool to explore and understand the /O capabilities
of the 68HC12 (and 68HCI1). The important topic of interrupts is introduced in

Xviii

Preface

Chapter 6 and specific examples of using interrupts in conjunction with various I/O
functions are given in Chapters 7-11.

Parallel interfacing will be discussed in Chapter 7 where examples will be
given of interfacing a 68HC12 to seven-segment displays. hex keypads. and liquid
crystal displays. Real-time interrupts are used to program interrupt-driven traffic
lights.

Chapter 8 will cover the 68HC12 Serial Peripheral Interface (SPI) where it will
be shown how to interface keypads and seven-segment displays using the SPI. The
68HCI1 and 68HC12 Analog-to-Digital (A/D) converter is described in Chapter 9
where an example is given of the design of a digital compass.

The 68HC12 programmable timer is discussed in Chapter 10 where examples
are given of using output compares, input captures, and the pulse accumulator.
Examples of using interrupts include the generation of a pulse train and the mea-
surement of the period of a pulse train. An example of storing hex keypad pressings
in a circular queue using interrupts is also included in Chapter 10. As a final exam-
ple of using interrupts a design is given of a sonar tape measure using the Polaroid
ultrasonic transducer.

Chapter 11 deals with the Serial Communication Interface (SCI) which is the
module used by the 68HC12 to communicate with the PC.

Chapters 1-11 provide all the basic material needed to program a 68HC12 mi-
crocontroller for most applications. These chapters can form the basis of a one-term
projects-oriented capstone design course at the senior/graduate level.

The material in Chapters 12 and 13 will be of interest to those who want access
to more advanced topics related to programming in WHYP. Chapter 12 describes
how to convert ASCII number strings to binary numbers and vice versa. Chapter 13
shows how you can create defining words using the CREATE ... DOES> construct.
These defining words are used to create jump tables and various data structures in
WHYP.

The 68HCI12 has special instructions that facilitate the implementation of
fuzzy control. Chapter 14 discusses fuzzy control and shows how to design a ftizzy
controller using WHYP on a 68HC12.

A number of special topics related to the 68HC12 are covered in Chapter 15
and as mentioned above Chapters 16 and 17 describe the C++ program for that
part of WHYP that runs on the PC. The appendices contain the 68HCI2 and
68HCI11 instruction sets, plus useful information about WHYP. including proce-
dures for installing WHYP on various evaluation boards.

Chuck Moore invented Forth in the late 1960s while programming minicom-
puters in assembly language. His idea was to create a simple system that would allow
him to write many more useful programs than he could using assembly language.
The essence of Forth is simplicity—always try to do things in the simplest possible
way. Forth is a way of thinking about problems in a modular way. It is modular in the
extreme. Everything in Forth is a word and every word is a module that does some-
thing useful. There is an action associated with Forth words. The words execute
themselves. In this sense they are object oriented. We send words parameters on the
data stack and ask the words to execute themselves and send us the answers back on

Preface Xix

the data stack. We really don’t care how the word does it—once we have written it
and tested it so we know that it works.

Forth has been implemented in a number of different ways. Chuck Moore’s
original Forth had what is called an indirect-threaded inner interpreter. Other Forths
have used what is callfed a direct-threaded inner interpreter. These inner interpreters
get executed every time you go from one Forth word to the next. that is. all the time.
WHYP is what is called a subroutine-threaded Forth. This means that the subroutine
calling mechanism that is built into the 68HCI12 is what is used to go from one
WHYP word to the next. In other words, WHYP words are just regular 68HC12
subroutines. This both simplifies the implementation and speeds up the execution,
at the expense of using somewhat more memory. In WHYP a word is compiled as a
3-byte jump-to-subroutine instruction while direct-threaded Forths need to store
only the 2-byte address in memory. The inner interpreter takes care of reading the
next address and executing the code at that address. Indirect-threaded Forths have
an additional level of indirection. The 2-byte address in memory points not to the
code to be executed, but to a location containing the address of the code to be exe-
cuted. WHYP avoids these complications by being subroutine threaded and using
the subroutine structure built into the 68HC12.

The way you program in Forth is bottom up—even though you may design the
overall solution top down. You define a simple little word (subroutine) and test it
out interactively at the keyboard. You put values on the data stack by simply typing
them on the screen. separated by spaces. followed by the name of the word. When
vou press <enter>, the word (subroutine) is executed immediately and it leaves the
answer(s) on the data stack which you can then display. This will all be explained in
detail in the first five chapters of this book.

You should think of WHYP as your personal language that will allow you to
write programs for the 68HC12 incrementally and interactively. Because we develop
WHYP from scratch in this book there will be no mystery as to how it works. The
entire source code—both the assembly language and the C+ + parts—are included
on the disk that comes with this book. In the true spirit of Forth this will give you
complete control over your programming environment. Remember, Forth is an ex-
tensible language—and WHYP is your personal language that you will be able to ex-
tend and modify to suit your needs.

Acknowledgment

The material in this book is based on many years of teaching Forth in a senior
graduate course on embedded systems. My interest in and knowledge of Forth
has benefited greatly from the Forth Interest Group (http://www.forth.
org/fig.html) and many enjoyable years attending the annual FORML Confer-
ence in Pacific Grove, CA, and the annual Rochester Forth Conference in
Rochester. NY. Many colleagues and students have influenced the development of
this book. Their stimulating discussions, probing questions, and critical comments
are greatly appreciated. [wish to thank Darrow F. Dawson of the University of
Missouri-Rolla who reviewed the manuscript and made important suggestions that
improved the book.

Contents

Preface

Chapter 1 Introducing the 68HC12
1.1 From Microprocessors to Microcontrollers
1.2 The 68HC12 Registers

1.2.1
1.2.2
1.2.3
1.2.4
1.2.5

The 68HC12 Accumulators
Index Registers, X and Y
Stack Pointer, SP

Program Counter, PC

The Condition Code Register
Carry (C)

Zero Flag (7)

Negative Flag (N)
Overflow Flag (V)
Half-Carry (H)

Interrupt Mask Flag (/)
X-Interrupt Mask Flag (X')
Stop Disable Flag (S)

vii

viii Contents

1.3 Writing Programs for the 68HC12 16
1.3.1 Editing and Assembling an .ASM File 16

1.3.2 Downloading and Executing the Program 18

1.4 Addressing Modes 22
1.5 Summary 24
Exercises 24
Chapter 2 Subroutines and Stacks 29
2.1 The System Stack 29
2.2 Subroutines 31
2.3 A Data Stack 35
2.4 Making Subroutines Interactive 39
2.5 Stack Manipulation Words 40
2.6 The Return Stack 46
2.7 Summary 50
Exercises 51
Chapter 3 68HC12 Arithmetic 53
3.1 Addition and Subtraction 53
3.1.1 Increment and Decrement Instructions 54
3.1.2 Double Numbers 55
3.1.3 Displaying Single and Double Numbers on the Screen 57

3.2 Multiplication 60
3.3 Division 63
3.3.1 16-Bit Signed Division: IDIVS 63
3.3.2 Extended Unsigned Division: EDIV 66
3.3.3 Extended Signed Division: EDIVS 69
3.3.4 Integer and Fractional Divide: IDIV and FDIV 71

The Instruction /IDIV 71

The Instruction DIV, Fractional Divide 73

A 68HC11 Version of UM/MOD 74

3.4 Shift and Rotate Instructions 75
3.4.1 Logical Shift Instructions 76
Logic Shift Left 76

Logic Shift Right 76

3.4.2 Arithmetic Shift Instructions 77
3.4.3 Rotate Instructions 77
Rotate Left - 78

Rotate Right 78

3.4.4 Shifting 16-Bit Words 78

3.5 Summary 79

Exercises 82

Contents ix

Chapter 4 WHYP—An Extensible Language 84
4.1 A Closer Look at WHYP 84
4.2 Defining New WHYP Words 86
4.2.1 Defining New Words Interactively 86
422 SEE and SHOW 89
42.3 Single-Stepping through Colon Definitions 90
424 Loading WHYP Words from a File 91
425 CRand." 92

4.3 Variables 94
4.3.1 Fetch and Store 95
4.3.2 System Variables 99
433 Arrays 100

44 Constants 101
4.4.1 Tables 102

45 EEPROM 105
4.5.1 Erasing the EEPROM 106
4.5.2 Programming the EEPROM 109
4.5.3 Storing WHYP Programs in the EEPROM 110

4.6 Summary 114
Exercises 116
Chapter 5 Branching and Looping 120
5.1 68HCI12 Branch Instructions 120
5.1.1 Short Conditional Branch Instructions 121
5.1.2 Unconditional Branch and Jump Instructions 123
5.1.3 Branching Examples ‘ 123
Branching on the Zero Flag Z 123

Branching on the Negative Flag N 126

Branching on the Carry and Overflow Flags, C and V 127

5.1.4 Bit-Condition Branch Instructions 127
5.1.5 Unsigned and Signed Branch Instructions 128

5.2 WHYP Branching and Looping Words 130
5.2.1 WHYP Conditional Words 131
5.2.2 WHYP Logical Words 133
523 IF...ELSE... THEN 134
524 FOR...NEXT Loop 137

A FOR ... NEXT Delay Loop 139

525 BEGIN... AGAIN 141
52,6 BEGIN...UNTIL 142
527 BEGIN...WHILE ... REPEAT 145

Sine and Arcsine 147

528 DO...LOOP 150

The Word LEAVE 151

X
5.3 Recursion in WHYP
5.4 Summary
Exercises

Chapter 6 Interrupts

6.1

6.4
6.5

6.6
6.7

68HC12 Interrupts
6.1.1 68HCI12 Nonmaskable Interrupts
Reset
COP (Computer Operating Properly)
Unimplemented Instruction Trap
Software Interrupts (SW/)
Nonmaskable Interrupt Request (X/RQ)
6.1.2 68HC12 Maskable Interrupts
68HCI1 Interrupts
Interrupt Vector Jump Tables
6.3.1 68HC711E9
6.3.2 D-Bugl2
Writing WHYP Interrupt Service Routines
Real-Time Interrupts
6.5.1 Real-Time Interrupt on a 68HC11
Writing Assembly Language Interrupt Service Routines
Summary

Exercises

Chapter 7 Parallel Interfacing

7.1

7.3

7.4

Parallel I/0O Ports
7.1.1 The MC68HC812A4 Parallel Ports
7.1.2 The MC78HCY912B32 Parallel Ports
7.1.3 The MC68HCT711EY Parallel Ports
Port A
Port B
Port C
Port D
Port E
Using Parallel Ports
7.2.1 Using Parallel Port Outputs
7.2.2 Using Parallel Port Inputs
Seven-Segment Displays -
7.3.1 Common-Anode Displays
7.3.2 Common-Cathode Displays—The MC14495-1
Keypad Interfacing
7.4.1 4 X 4 Hex Keypad
7.4.2 The 74C922 16-Key Encoder
7.4.3 Interfacing a 16 X | Hex Keypad Using a 74154 Decoder

Contents

153
155
157

162
163
163
163
163
164
164
165
165
167
168
168
170
172
173
176
178
181
181

183
183
184
186
188
188
188
189
191
191
191
191
194
195
196
198
199
199
204
205

Contents

7.5 Liquid Crystal Displays

7.6 Interrupt-Driven Traffic Lights
7.7 Summary

Exercises B

Chapter 8 The Serial Peripheral Interface (SPI)
8.1 Operation of the SPI
8.1.1 The SPI Registers
8.1.2 Programming the SPIin WHYP
8.2 Keypad Interfacing with 74165 Shift Registers
8.3 Four-Digit Seven-Segment Display Using a MC 14499
8.4 The 68HC68T1 Real-Time Clock
8.5 Summary
Exercises

Chapter 9 Analog-to-Digital Converter
9.1 Analog-to-Digital Conversion
9.2 The 68HCI11 A/D Converter
9.2.1 WHYP Words for the 68HC11 A/D Converter
9.3 The 68HCI12 A/D Converter
9.3.1 WHYP Words for the 68HC12 A/D Converter
9.4 Design of a Digital Compass
9.5 Summary
Exercises

Chapter 10 Timers
10.1 The 68HC12 Programmable Timer
10.1.1 The 68HC11 Timer Registers
10.2 Output Compares
10.2.1 Pulse Train Example
10.2.2 Output Compares on a 68HC11
10.3 Input Capture
10.3.1 Input Captures on a 68HC11
10.4 Pulse Accumulator
10.4.1 The Pulse Accumulator on a 68HCI11
10.5 Timing Interrupt Service Routines
10.6 A Circular Queue Data Structure
10.7 Keypad Interfacing Using Interrupts
10.8 Pulse Train Using Interrupts
10.9 Measuring the Period of a Pulse Train Using Interrupts
10.10 The Polaroid Ultrasonic Transducer
10.11 Summary
Exercises

Xi

207
212
215
216

220
221
222
225
226
228
232
236
237

243
243
245
248
250
254
256
260
260)

264
265
268
269
271
274
275
277
277
280
280
282
284
286
289
292
295
296

xii

Chapter 11 The Serial Communication Interface (SCI)
11.1 Asynchronous Serial 1/0
11.2 The 68HC12 SCI Interface
The Data Register
The Status Register
The Control Registers
The Baud Rate Control Register
11.2.1 Programming the SCI Port
11.2.2 The 68HC11 SCI Registers
11.3 Programming the SCI in WHYP
11.3.1 Communicating with a PC
11.3.2 Testing SCI1 with the LOOP Function
11.3.3 Sending Register Values to the PC
11.4 SCI Interface Using Interrupts
11.4.1 Master-Slave SCI Communications
11.5 Summary
Exercises

Chapter 12 Strings and Number Conversions
12.1 WHYP Strings
12.2 ASCII Number String to Binary Conversion
12.3 Binary Number to ASCII String Conversion
12.3.1 Examples of Converting Numbers to ASCII Strings
124 The WHYP Words CMOVE and CMOVE>
12.5 Summary
Exercises

Chapter 13 Program Control and Data Structures
13.1 CREATE ... DOES>
13.2 Program Control

13.2.1 A Simple Jump Table

13.2.2 A Jump Table with WHYP Words
13.3 Data Structures

13.3.1 Arrays

13.3.2 Linked Lists
13.4 Summary
Exercises

Chapter 14 Fuzzy Control =
14.1 Fuzzy Sets
142 Design of a Fuzzy Controller
14.2.1 Fuzzification of Inputs: get_inputs()
The 68HC12 M EM Instruction
WHYP Words for Defining Membership Functions

Contents

302
302
304
305
306
307
309
310
312
314
316
317
319
322
324
326
327

331
332
333
335
336
339
340
342

344
344
347
347
348
350
351
352
357
357

361
361
364
365
366
368

Contents

14.2.2 Fuzzy Inference
14.2.3 Processing the Rules: fire_rules()
The 68HC12 REV Instruction
WHYP Words for Defining Fuzzy Rules
14.2.4 Centroid Defu7zification
14.2.5 Output Defuzzification: find_output()
The 68HC12 WAV Instruction
14.2.6 A Fuzzy Control Example—Floating Ping-Pong Ball
14.3 Summary
Exercises

Chapter 15 Special Topics
15.1 Computer Operating Properly (COP)
15.2 Key Wakeup (6SHC812A4 only)
15.3 Flash EEPROM (68HCY12B32 only)
15.3.1 Erasing and Programming the Flash EEPROM
15.4 Pulse-Width Modulator (68HC912B32 only)
15.5 Summary
Exercises

Chapter 16 WHYP12 C++ Classes
16.1 A Character Queue Class
16.2 A UART Class
16.2.1 The 8250 UART
16.3 An 5-Record Class
16.4 A Link List Class
16.5 A Dictionary Class
16.6 Summary

Chapter 17 WHYP12 C++ Main Program
17.1 Compiling and Running the WHYP Host Program
17.1.1 The WHYP Configuration File
17.2 The Immediate Dictionary
17.3 The WHYP Main Program
17.3.1 Checking the COM Port
17.3.2 Getting Input from the Keyboard
17.3.3 Processing an Input Word
17.4 Communicating with the Target Board
17.4.1 The Terminal Host Function
17.5 Compiler Words
17.5.1 Branching Words
17.5.2 Compiling Colon Definitions
17.6 Processing Characters Received from the Target
17.7 Summary

xiii

371
373
373
375
376
379
379
381
385
386

389
389
391
394
394
396
400
401

402
402
405
405
413
416
420
430

430
430
431
434
439
441
442
445
448
450
451
451
453
454
458

