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Preface

The present volume gives a systematic treatment of potential
functions. It takes its origin in two courses, one elementary and one
advanced, which the author has given at intervals during the last
ten years, and has a two-fold purpose: first, to serve as an introduction
for students whose attainments in the Calculus include some knowledge
of partial derivatives and multiple and line integrals; and secondly,
to provide the reader with the fundamentals of the subject, so that
he may proceed immediately to the applications, or to the periodical
literature of the day.

It is inherent in the nature of the subject that physical intuition
and illustration be appealed to freely, and this has been done. However,
in order that the book may present sound ideals to the student, and
also serve the mathematician, both for purposes of reference and as
a basis for further developments, the proofs have been given by rigorous
methods. This has led, at a number of points, to results either not
found elsewhere, or not readily accessible. Thus, Chapter IV contains
a proof for the general regular region of the divergence theorem (Gauss’,
or Green's theorem) on the reduction of volume to surface integrals.
The treatment of the fundamental existence theorems in Chapter XI
by means of integral equations meets squarely the difficulties incident
to the discontinuity of the kernel, and the same chapter gives an
account of the most recent developments with respect to the Dirichlet
problem.

Exercises are introduced in the conviction that no mastery of a
mathematical subject is possible without working with it. They are
designed primarily to illustrate or extend the theory, although the
desirability of requiring an occasional concrete numerical result has
not been lost sight of.

Grateful acknowledgements are due to numerous friends on both
sides of the Atlantic for their kind interest in the work. It is to my
colleague Professor COOLIDGE that I owe the first suggestion to under-
take it. To Professor OsGooD I am indebted for constant encouragement
and wise counsel at many points. For a careful reading of the manuscript
and for helpful comment, I am grateful to Dr. ALEXANDER WEINSTEIN,
of Breslau; and for substantial help with the proof, I wish to thank
my pupil Mr. F. E. ULRICH. It is also a pleasure to acknowledge the
generous attitude, the unfailing courtesy, and the ready coéperation
of the publisher.

Cambridge, Mass. O. D. Kellogg"
August, 1929.
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Chapter I.
The Force of Gravity.

1. The Subject Matter of Potential Theory.

While the theory of Newtonian potentials has various aspects, it
is best introduced as a body of results on the properties of forces
which are characterized by Newtons Law of Universal Gravitation':

Every particle of matter in the universe attracts every other particle, with
a force whose divection is that of the line joining the two, and whose magnitude
is divectly as the product of their masses, and inversely as the square of
thety distance from each other.

If, however, potential theory were restricted in its applications to
problems in gravitation alone, it could not hold the important place
which it does, not only in mathematical physics, but in pure mathema-
tics as well. In the physical world, we meet with forces of the same char-
acter acting between electric charges, and between the poles of magnets.

But as we proceed, it will become evident that potential theory may
also be regarded as the theory of a certain differential equation, known
as LApLACE’s. This differential equation characterizes the steady flow
of heat in homogeneous media, it characterizes the steady flow of ideal
fluids, of steady electric currents, and it occurs fundamentally in the
study of the equilibrium of elastic solids.

The same differential equation in two dimensions is satisfied by
the real and imaginary parts of analytic functions of a cumplex variable,
and RieMANN founded his theory of these functions on potential theory.
Differential geometry, conformal mapping, with its applications to geo-
graphical maps, as well as other branches of mathematics, find impor-
tant uses for Laplace’s equation. Finally, the methods devised for the
solution of problems of potential theory have been found to be of far
wider applicability, and have exerted a profound influence on the
theory of the differential: equations of mathematical physics, both
ordinary and partial, and on other branches of analysis2.

1 Philosophiae Naturalis Principia Mathematica, Book I1I, Propositions I—VII.
Formulated as above in THomsoN and Tair, Natural Philosophy, Pt.II, p.o9.
2 Indications on the literature will be found at the end of the book.



2 The Force of Gravity.

2. Newton’s Law.

It is our experience that in order to set bodies in motion, or to stop
or otherwise change their motion, we must exert forces. Accordingly,
when we see changes in the motion of a body, we seek a cause of the cha-
racter of a force. As bodies about us, when free to do so, fall toward
the earth, we are accustomed to attribute to the earth an attracting
power which we call the force of gravity. Itisnot at all obvious that the
smaller bodies on the earth attract each other; if they do, the forces
must be exceedingly minute. But we do see the effects of forces on the
moon and planets, since they do not move in the straight lines we are
accustomed to associate with undisturbed motion. To NEwTON it
occurred that this deviation from straight line motion might be re-
garded as a continual falling, toward the earth in the case of the moon,
and toward the sun in the case of the planets; this continual falling could
then be explained as due to an attraction by the earth or sun, exactly
like the attraction of the earth for bodies near it. His examination of
the highly precise description of planetary motion which KEPLER had
embodied in three empirical laws led, not only to the verification of this
conjecture, but to the generalization stated at the beginning of the
first section. The statement that all bodies attract each other according
to this law has been abundantly verified, not only for heavenly bodies,
but also for masses which are unequally distributed over the earth, like
the equatorial bulge due to the ellipticity of the earth, and mountains,
and finally for bodies small enough to be investigated in the laboratory.

The magnitude of the force between two particles, one of mass m,,
situated at a point P, and one of mass m,, situated at Q, is given by

Newton’s law as
m, mg

F=yfil,

where 7 is the distance between P and Q. The constant of proportio-
nality y depends solely on the units used. These being given, its deter-
mination is purely a matter of measuring the force between two bodies
of known mass at a known distance apart. Careful experiments have
been made for this purpose, an account of which may be found in the
Encyclopedio. Britannica under the heading Gravitation'. If the unit of
mass is the gramme, of length, the centimetre, of time, the second, and

1 See also ZENNECK: Encyklopadie der Mathematischen Wissenschaften, Vol. V,
pp. 256—67. Recently, measurements of a high degree of refinement have been
made by Dr. P. R.HEYL, of the U. S. Bureau of Standards. See A Redetermination
of the Constant of Gravitation, Proceedings of the National Academy of Sciences,
Vol. 13 (1927), pp. 601—605.

The value of yp there given has been adopted here, although it should be
noted that further experiments by Dr. HEYL are still in progress.
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of force, the dyne, it is found that y = 6:664 X 10-8. If we borrow the
result (p. 7) that a homogeneous sphere attracts as if concentrated at
its center, we see that this means that two spheres of mass one gramme
each, with centers one centimetre apart, will attract eachother with a
force of ‘00000006664 dynes.

In order to avoid this inconvenient value of y, it is customary in
potential theory to choose the unit of force so that y = 1. This unit of
force is called the attraction unit.

Exercises.

1. If the unit of mass is the pound, of length, the foot, of time, the second,
and of force, the poundal, show that y has the value 1070 X 10~°. One foot
contains 30°46 cm., and one pound, 453'6 gm.

2. Two homogeneous lead spheres, of diameter 1 ft. are placed in contact
with each other. Compute the force with which they attract each other. A cubic
foot of lead weights 710 pounds. Answer, about ‘0000046 1b. This is approxi-
mately the weight of a square of medium weight bond paper, of side 1/, in.

3. Compute the mass of the earth, knowing the force with which it attracts a
given mass on its surface, taking its radius to be 3955 miles. Hence show that
the earth’s mean density is about 5'5 times that of water. Newton inferred that
the mean density lies between 5 and 6 times that of water.

4. Find the mass of the sun, it being given that the sun’s attraction on the
earth is approximately in equilibrium with the centrifugal force due to the earth’s
motion around the sun in a circle of 4'90 X 10! feet. Answer, about 330,000 times
the mass of the earth.

3. Interpretation of Newton’s Law for Continuously
Distributed Bodies.

Newton’s law was stated in terms of particles. We usually have to
deal, not with particles, but with continuously distributed matter. We
then naturally think of dividing the body into small parts by the me-
thod of the integral calculus, adding the vector forces corresponding
to the parts, and passing to the limit as the maximum chord of the parts
approaches 0. This, in fact, is exactly what we shall do. But it should
be pointed out that such a process involves an additional assumption.
For no matter how fine the division, the parts are still not particles,
Newton’s law as stated is not applicable to them, and we have no means
of determining the forces due to the parts.

The physical law which we shall adopt, and which may well be re-
garded simply as an amplified statement of Newton’s law, is the follow-
ing: Given two bodies, let them be divided into elements after. the manner
of the integral calculus, and let the mass of each element be vegarded as con-
centrated at some point of the element. Then the attraction which one body
exerts on the other is the limit of the attraction which the corresponding
system of particles exerts on the second system of particles, as the maximum
chord of the elements approaches 0. We shall revert to this assumption,
and consider its legitimacy, on p. 22.



4 The Force of Gravity.

4. Forces Due to Special Bodies.

Because of their use in other problems of potential theory, because
of the generalizations which they illustrate, and because of the practice
which they give in dealing with Newtonian forces, the attractions due
to special bodies are well worth study.

While each of two bodies attracts the other, the forces exerted are
not equal vectors. Their magnitudes are equal, but they are oppositely
directed. In order to avoid ambiguity it will be convenient to speak
of one body as the attracting, and the other as the attracted body. This
merely means that we are specifying the body the force on which we
are determining. We shall also confine ourselves for the present to the
case in which the attracted body is a unit particle. It will appear in §11
(page 27) that the results are of wider significance than is at first evident.
This section will be devoted to some illustrative examples.

Strazght homogeneous segment. Let us consider a straight line segment,
which we regard as having mass, so distributed that the mass on any
interval is proportional to the length of the interval. The constant factor
of proportionality 4 is called the linear density. We have here an ideali-
zation of a straight wire, which is a better approximation the smaller
the diameter of the wire relatively to its length and the distance away
of the attracted particle.

Let axes be chosen so that the ends of the wire are the points (0, 0, 0)
and (7,0, 0). As a first case, let the attracted particle be in line with the
wire, at (x, 0, 0), ¥ > [. Let the wire be divided into intervals by the
points £§,=0, &, &,, ... &, =1 (fig. 1). Then the interval (£, &, ,) carries
a mass A 4 &, which, by our physical law, is to be regarded as concen-
trated at some point & of the interval. The force due to the particle
thus constructed will lie along the x-axis, and will be given, in attraction

£ units, by

X

f 4 4t 4 P . il ;AE"

4 Sk Exer L & A% mim [ grp
Fig. 1. AV =105 "V A Z =0

The force due to the whole segment will be the limit of the sum of the
forces due to the system of particles, or

A
RO AdéE e %
b f(hag, vip, " pay.
0
or
D, EIULL | SO JOUP JINE S0 a5
x(x — 1)

The result may be given a more suggestive form by introducing the
total mass M = I, and considering at what point of the segment a
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particle of that mass should be placed in order to yield the same attrac-
tion on a unit particle at P (x, 0, 0). If ¢ is the coérdinate of this point,
Al M T T
X=—7—(x—__41)—=”—(—2 and C=}x(l—x).
Thus the wire attracts a unit particle at P as if the mass of the wire were
concentrated at a point of the wive whose distance from P is the geometric
mean of the distances from P of the ends of the wire.

As P approaches the nearer end of the wire, the force becomes in-
finite, but only like the inverse first power of the distance of P from
this end, although a particle would produce a force which became in-
finite like the inverse square of the distance. The difference is that in
the case of the particle, P draws near to the whole mass, whereas in the
case of the wire the mass is distributed over a segment to only one of
whose points does P draw arbitrarily near.

As P recedes farther and farther away, the equivalent particle (as
we shall call the particle with the same mass as the wire, and with the
same attraction on a unit particle at P) moves toward the mid-point
of the wire, and the attraction of the wire becomes more and more
nearly that of a fixed particle at its mid-point. An examination of such
characteristics of the attraction frequently gives a satisfactory check
on the computation of the force.

Let us now consider a second position of the attracted particle,

l
namely a point P (E’ s 0) on the perpendicular bisector of the material
segment (fig. 2). The distance » of the attracted particle from a point
(££,0,0) of the interval (&, &y) is given by
RDRLIA i
o (&-—5) T

and the magnitude of the force at P, due to a particle at this point,
whose mass is that on the interval (&, &,.,) is

AAdE,
AF, = ——=——.
(5’: e %)2_'_ y2 ’ p:(f"y}
AW}
This force has the direction cosines i =9
E' s a3 _1 . i ?\\ + i
f 2 = 0 0 En Swer L
y -7 v’ ’ Fig. 2

and therefore the components

/
AMEl—5) A&
A ( 2) o i — Ay A&, R AT

[, (S
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The limits of the sums of these components give the components of the
attraction of the segment

L 2 .
§— 5 )d¢

Jle=3+r] Jle=sen]

The first integral vanishes, since the integrand has equal and opposite

, £2=0.

c T l : : ;
values at points equidistant from & = . The second integral is easily

evaluated, and gives
X | A

B 3
T,

if ¢ is the geometric mean of the distances from P of the nearest and
farthest points of the wire. The equivalent particle, is thus seen to lie
beyond the wire as viewed from P. This fact is significant, as it shows
that there does not always exist 7» a body a point at which its mass can
be concentrated without altering its attraction for a second body.
Our physical law does not assert that such a point exists, but only that
if one be assumed in each of the parts into which a body is divided,
the errors thereby introduced vanish as the maximum chord of the parts
approaches 0.

Spherical shell. Let us take as a second illustration the surface
of a sphere with center at O and radius a, regarding it as spread with
mass such that the mass on any part of the surface
is proportional to the area of that part. The con-
stant factor of proportionality ¢ is called the
surface demsity. We have here the situation
usually assumed for a charge of electricity in equi-
librium on the surface of a spherical conductor?.
Let the attracted particle be at P (0,0,2), z=a
. (fig. 3). Let A4S, denote a typical element

Fig. 3. of the surface, containing a point @, with
spherical coérdinates (a, ¢z, ¥;). Then the magnitude of the element
of the force at P due to the mass o 4 S,. of the element of surface 4.S,,
regarded as concentrated at Q, is

ocdS; cdS;
72 a® + 22 — 2azcosd] *

AF, =

By symmetry, the force due to the spherical shell will have no com-
ponent perpendicular to the z-axis, so that we may confine ourselves

1 See Chapter VII (page 176).
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to the components of the elements of force in the direction of the z-axis.
The cosine of the angle between the element of force and this axis is

acosP — z
e
so that

o(acos®, — z) A4S,

AZk= 1
[a® + 22 — 2azcosz9,,’];

and the total force is given by the double integral over the surface of

the sphere
Z_Uff (acos® — 2)dS
[a® + 22 — 2azcos19]%
S

This is equivalent to the iterated integral

T 27

Z_o_asz (acos® — z)dpsind dd
0 0

[a® + 22 — 2azcosz9]"}

_27l0'£12f (acos® — z)sind dd

[a® + 2% — 2azcosz9]g'.
0

In evaluating this last integral (which may be done by introducing »
as the variable of integration), it must be kept in mind that

r =7Va® + 22 — 2azcos?d

is a distance, and so essentially positive. Thus, its value for 4 = 0 is
|a — z|, thatisa — zor z — a according as @ > z or z > a. The result is

4mac
22 22

Z=0 for 0<z2<a:

7z = — {0r: 2 >4,

That is, a homogeneous spherical shell attracts a particle at an exterior
point as if the mass of the shell were concentrated at its center, and exercises
no force on a particle in its interior.

Homogeneous solid sphere. If a homogeneous solid sphere be thought
of as made up of concentric spherical shells, it is a plausible inference
that the whole attracts a particle as if the sphere were concentrated at
its center. That this is so, we verify by setting up the integral for the
attraction. Let » denote the constant ratio of the mass of any part of
the sphere to the volume of the part, that is, the density. The mass
x4V in the element AV, regarded as concentrated at the point
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Q (o, ¢, ¥) will exert on a unit particle at P (z, 0, 0), a force whose
magnitude is

»AV
AF——9~2+52—2gzctﬁ

and whose component in the direction of the z-axis is therefore
x (pcosd — z) AV

A2 =k
[0% + 22 — 202z cos 9]

Hence, for the total force,

a 2%
fof (pcos® — z d(pSlnz9d1992d9
[0% 4 22 — 2 gzcosz?]"
The two inner integrals have been evaluated in the previous example.

We have only to replace a by p and evaluate the integral with respect to .
The result is ‘

a

Z:__4'rxf92d 47txa3=_ﬂ

22 322 e
0
as was anticipated.
Further examples will be left as exercises to the reader in the
following sections. We take them up in the order of multiplicity of the

integrals expressing the components of the force.

5. Material Curves, or Wires.

We take up first the case in which the attracting body is a material
curve. Consider a wire, of circular cross-section, the centers of the circles
lying on a smooth curve C. If we think of the mass between any pair
of planes perpendicular to C as concentrated on C between these planes,
we have the concept of a material curve. By the linear density A of the
material curve, or where misunderstanding is precluded, by the density,
at a point Q, we mean the limit of the ratio of the mass of a segment
containing Q to the length of the segment, as this length approaches 0.

Our problem is now to formulate the integrals giving the force
exerted by a material curve C on a particle at P. Let the density of C
be given as a function 4 of the length of arc s of C measured from one
end. We assume that 4 is continuous. Let C be divided in the usual way
into pieces by the points s, =0, sy, Sy, ..., s, =/, and let us consider
the attraction of a typical piece 4s;. The mass of this piece will lie be-
tween the products of the least and greatest value of 1 on the piece by
the length of the piece, and therefore it will be equal to l,: As,, where
A, is a properly chosen mean value of A. A particle with this masg,
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situated at a point @, of the piece, will exert on a unit particle at
P (x, v, 2z) a force whose magnitude is
AMAaS o
AF = s = PO

k

If &, mi, £y are the codrdinates of @, the direction cosines of this force

are
o -_2
cosa—é—"—-—, cosfp=""Y cosy=-¢"——,
Tk 47 e

so that the components of the force due to the typical piece are

M (& — ) A5 M(Cr—2)ds,
r3 rd

AX

’

AV I Bl
k

The components in each of the three directions of the axes correspond-

ing to all the pieces of the wire are now to be added, and the limits

taken as the lengths of the pieces approach 0. The results will be the

the components of the force on the unit particle at P due to the curve:

Xzf“L:st,
7
C
Aln—1y)
W y = [2022 g,
(0]
Al —2)
szTds.
C

We shall sometimes speak of a material curve as a wire. We shall
also speak of the attraction on a unit particle at P simply as the attrac-
tion at P. An illustration of the attraction of a wire was given in the
last section. Further examples are found in the following exercises,
which should be worked and accompanied by figures.

Euxercises.

1. Find the attraction of a wire of constant density having the form of an
arc of a circle, at the center of the circle. Show that the equivalent particle is

distantJ/,L from the center, where a is the radius of the arc and 2« is the
sin o

angle it subtends at the center. The equivalent particle is thus not in the body.
But there is a point on the wire such that if the total mass were concentrated there,
the component of its attraction along the line of symmetry of the arc would be the
actual attraction. Find this point.

2. Find the attraction of a straight homogeneous piece of wire, at any point
P of space, not on the wire. Show that the equivalent particle lies on the bisector
of the angie 4 PB, A and B being the ends of the wire, and that its distance ¢
from P is the geometric mean of the two quantities: the length of the bisector

between P and the wire, and the arithmetic mean of the distances P4 and PB.
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3. Show, by comparing the attraction of corresponding elements, that a straight
homogeneous, wire exercises the same force at P as a tangent circular wire with
center at P, terminated by the same rays from P, and having the same linear
density as the straight wire.

4. Find the attraction of a homogeneous circular wire at a point P on the
axis of the wire. Show that the distance ¢ of the equivalent particle is given by

6 = dl/-g;, where d is the distance of P from the wire, and 4’ its distance from

the plane of the wire.

5. In Exercise 2, show that if the wire be indefinitely lengthened in both
directions, the force approaches a limit in direction and magnitude (by definition,
the force due to the infinite wire), that this limiting force is perpendicular to the

21 3 ’ .
wire, toward it, and of magnitude Tl where 4 is the linear density of the wire,

and 7 the distance of P from it.

6. Material Surfaces, or Laminas.

Consider a thin metallic plate, or shell, whose faces may be thought
of as the loci formed by measuring off equal constant distances to
either side of a smooth surface S on the normals to S. We arrive
at the notion of a material surface or lamina by imagining the mass
of the shell concentrated on S in the following way: given anv
simple closed curve on S, we draw the normals to S through this curve;
the mass included within the surface generated by these normals we
regard as belonging to the portion of S within the curve, and this for
every such curve. The surface density, or if misunderstanding is pre-
cluded, the density, of the lamina at Q is defined as the limit of the ratio
of the mass of a piece of S containing Q to the area of the piece, as the
maximum chord of the piece approaches 0. In addition to the terms
material surface and lamina, the expressions surface distribution, and
surface spread, are used.

As we have noted in studying the attraction of a material spherical
surface, the notion of surface distribution is particularly useful in
electrostatics, for a charge in equilibrium on a conductor distributes
itself over the surface.

Now, according to Couloumb’s law, two point charges of electricity
in the same homogeneous medium, exert forces on each other which
are given by Newton’s law with the word mass replaced by charge,
except that if the charges have like signs, they repel each other, and if
opposite signs, they attract each other. A constant of proportionality
will be determined by the units used and by the medium in which the
charges are situated. Because of the mathematical identity, except for
sign, between the laws governing gravitational and electric forces, any
problem in attraction may be interpreted either in terms of gravitation
or in terms of electrostatics. Thus, in the case of an electrostatic charge



