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This is an important collection of papers on the foundations of proba-
bility that will be of value to philosophers of science, mathematicians,
statisticians, psychologists, and educators.

The collection falls into three parts. Part I comprises five papers on
the axiomatic foundations of probability. Part II contains seven articles
on probabilistic causality and quantum mechanics, with an emphasis
on the existence of hidden variables. The third part consists of a single
extended essay applying probabilistic theories of learning to practical
questions of education: it incorporates extensive data analysis.

Patrick Suppes in one of the world’s foremost philosophers in the area
of probability and has made many contributions to both the theoretical
and the practical side of education. The statistician Mario Zanotti is a
long-time collaborator.
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Preface

The joint articles that we have written over the past twenty years fall into three
different areas and consequently there is a natural division of this collection of
our papers into three parts. Part I is concerned with our work in the foundations
of probability, Part IT with causality and quantum mechanics, and Part I1I with
application of probabilistic models in education.

The five papers in Part I represent our joint efforts to clarify and extend the
qualitative foundations of probability first given impetus in the important work
of Bruno de Finetti. Both of us, but separately over a good many years, had ex-
tensive conversations with de Finetti about the foundations of probability, and
several of our papers were inspired by questions he raised. In fact, the first two
articles on necessary and sufficient conditions for existence of a strictly agree-
ing measure of a qualitative probability ordering were a response to de Finetti’s
early qualitative axioms and the subsequent search for necessary and sufficient
axioms. The important point about our work is that in order to get simple axioms
we had to go beyond the usual event structure of a probability space to elemen-
tary random variables. But we felt at the time, and continue to feel, that this is an
extension that is very much in de Finetti’s own line of thought, as reflected for
example, in his introduction at an early stage of random quantities without an
underlying probability space to represent them. Itis also worth noting that char-
acterizing the expectation of elementary random variables axiomatically builds
on a long tradition in the theory of probability to define probability in terms of
expectation. This is already to be found in Bayes’s eighteenth century treatise.

Another direction of representation is to generalize from probabilities that
subjectively seem sometimes difficult to manage to the weaker concept of hav-
ing upper and lower probabilities. The third and fourth papers deal with such
problems, and particularly the fourth paper is related to questions raised by de
Finetti. In particular we examine in this article the conditions on upper and
lower probabilities for them to imply the existence of probabilities. The fifth
and final paper in Part I addresses a somewhat different but related problem,
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namely, that of giving random-variable rather than numerical representation
for extensive quantities in the theory of measurement. Here the methods are
somewhat different and in fact we use in a central way the well-known Hausdorf
moment theorem to give qualitative conditions for numerical random variables
whose distributions have finite support, that is, are defined on a bounded set.
The central problem addressed in this paper is very much related to the long
history of the study of the theory of error in probability theory going back to the
early work of Simpson in the eighteenth century and later work by many others.
This problem of finding appropriate qualitative axioms for errors or variability
in measurements remains one of the least satisfactorily solved problems in the
foundations of measurement.

Part II contains seven papers on the foundations of the theory of probabilistic
causality and more particularly on the foundations of quantum mechanics. The
first three papers deal directly with problems in quantum mechanics, the first
with the stochastic incompleteness of quantum mechanics looked at from the
standpoint of stochastic processes, the second and third with the problems that
arise in connection with hidden-variable theories and in particular with the
problem of such theories in the context of Bell’s theorem. Our 1976 paper
on these matters, which is the second paper in this section, was among the
earliest to introduce in a formal way precise probabilistic statements about the
independence conditions required for the derivation of Bell’s theorem.

In the third paper we move away from specific questions in quantum mechan-
ics to showing the impossibility of hidden variables when we impose natural
conditions such as exchangeability and symmetry. It is important for posi-
tive scientific work regarding hidden variables to understand that rather natural
conditions are sufficient to show that hidden variables cannot exist. The fourth
paper moves in the opposite direction. Here we show that without such con-
ditions probabilistic explanations in terms of hidden variables, in fact deter-
ministic ones, are always possible whenever the observable random variables
have a joint probability distribution. This is an interesting twist on the old
and mistaken tale of the conflict between determinism and probability. Here
they go hand in hand. Deterministic hidden variables can be found if and only
if the phenomenological observables have a joint probability distribution. In
the search for hidden variables that have conceptual meaning we need to im-
pose much stronger conditions of the sort to be found in the third paper in this
section. As the fourth paper shows, without such conditions a mathematical
construction of hidden variables can always be given, even if this mathematical
construction does not have any direct conceptual interpretation in terms of the
scientific framework involved.

The fifth paper reviews and extends our earlier work on probabilistic causality
and symmetry with special reference to quantum mechanics. The sixth paper
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returns to hidden variables in the context of Bell’s theorem and gives a necessary
condition for existence of a hidden variable when the number of hidden variables
is greater than four. Recall that in Bell’s theorem only four observables make
up the inequalities, but it is natural to go beyond four and to ask more general
questions. Finally, in the seventh paper in this section, written to celebrate the
90th birthday of Karl Popper, we show that if we weaken the conditions in the
Bell-type situation to the existence, not of a probability distribution, but of an
upper probability measure, then such a measure can always be found that is also
compatible with the results of quantum mechanics. However, as we show in the
paper, this upper probability measure is not monotonic, which means that there
are events A and B such that even though A must occur if B occurs, the upper
probability measure assigns a lower measure to A than to B. We extend in that
framework our earlier results on causality to the existence of common causes
in the framework of such upper measures. The results turn out to be rather
satisfactory from the standpoint of their neatness of formulation, but whether
or not they will end up having any application scientifically is yet to be seen.

Part III on applications in education of probabilistic models contains only
one paper. It has not been previously published, but in fact over the past twenty
years we have probably devoted as much of our joint effort to this work as to
any other. Much of what we have done remains unpublished, although our
first publication in this domain appeared in 1976 and, in fact, even earlier as a
technical report in 1973.

References to our earlier work in education are given at the end of the long
article that constitutes Part ITI. This paper deals with work that we are continuing
and will continue beyond the point at which the present volume appears, namely,
work on stochastic models of mastery learning. Here we try to give a sample
of the kind of detailed empirical work we think is possible in education in
the application of specific probabilistic models of learning to actual instruction
when it takes place in the framework of computer-based education. It would be
our hope that there will be in the future much further development of the kind
of models we describe and develop, which are, as can be seen in the complete
formulation at the end of the paper, rather intricate.

Acknowledgments for permission to reproduce the various articles are given
at the bottom of the first page of each paper, but thanks are extended here to
the many editors and publishers who generously agreed to publication. Finally,
we acknowledge the help and patience of Laura von Kampen in preparing this
volume for publication.

Patrick Suppes
Stanford, California Mario Zanotti
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Necessary and sufficient conditions for existence of
a unique measure strictly agreeing with a
qualitative probability ordering

1. CONCEPTUAL BACKGROUND

Let €2 be a nonempty set and let F be an algebra of events on £, i.e., an algebra
of sets on . Let = be a qualitative ordering on F. The interpretation of
A= B for two events A and B is that A is at least as probable as B. A (finitely
additive) probability measure P on F is strictly agreeing with the relation =
if and only if, for any two events A and B in F,

P(A)> P(B)iff A= B.

A variety of conditions that guarantee the existence of a strictly agreeing
measure is known. Without attempting a precise classification, the sets of con-
ditions are of the following sorts: (i) sufficient but not necessary conditions for
existence of a unique measure when the algebra of events is infinite (Koopman,
1940; Savage, 1954; Suppes, 1956); (ii) sufficient but not necessary conditions
for uniqueness when the algebra of events is finite or infinite (Luce, 1967); suf-
ficient but not necessary conditions for uniqueness when the algebra of events is
finite (Suppes, 1969); (iv) necessary and sufficient conditions for existence of a
not necessarily unique measure when the algebra of events is finite (Kraft, Pratt,
& Seidenberg, 1959; Scott, 1964; Tversky, 1967). A rather detailed discussion
of these various sets of conditions is to be found in Chapters 5 and 9 of Krantz,
Luce, Suppes, and Tversky (1971).

The difficulties of giving reasonably simple conditions in terms of the qual-
itative ordering of events are exemplified by Luce’s axiom, which is weaker
than Koopman’s equipartition axiom or Savage’s related but somewhat stronger
axiom. Luce’s axiom is the following (Krantz et al., 1971, p. 207):

Reprinted from Journal of Philosophical Logic 5 (1976), 431—438.
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For any events A, B, C, and D suchthat ANB = @, A > C, and B %= D, there exist
events C’, D', and E such that

(i) E~ AUB;

(i) C'ND' = Q;
(iii) C'UD’' C E;
(iv) C'~Cand D' = D.
Here > is the strict ordering relation and ~ the equivalence relation defined
in terms of the weak ordering > . The meaning of this axiom is complex and
not easy to state in words. As we search for weaker axioms, closer to being
necessary and not merely sufficient, the situation seems likely to get worse. The
moral of the effort is that events are the wrong objects to consider. Some slightly
richer concept is needed. Extension from one set of objects to a larger and richer
set is a characteristic move in mathematics. The most familiar examples are
extension of the rational numbers to the real numbers and extension of the
real numbers to the complex numbers. As Georg Kreisel has emphasized in
several conversations, the introduction of auxiliary concepts is an indispensable
practical move in solving significant problems in many domains of mathematics
and science.

The main result of this article exemplifies how easily simplification can follow
from the introduction of auxiliary concepts. In the present case the move is
from an algebra of events to an algebra of extended indicator functions for the
events. By this latter concept we mean the following. As before, let €2 be the
set of possible outcomes and let 7 be an algebra of events on €2, i.e., F is a
nonempty family of subsets of €2, and is closed under complementation and
union, i.e., if A is in F, —A, the complement of A with respect to €2, is in F,
and if A and B are in F then AU B isin F. Let A€ be the indicator function (or
characteristic function) of event A. This means that A€ is a function defined on
2 such that for any w in €2,

oo [lifweA
A(“’)“{Oifw¢A.

The algebra F* of extended indicator functions relative to JF is then just the
smallest semigroup (under function addition) containing the indicator functions
of all events in F. In other words, F™* is the intersection of all sets with the
property that if A is in F then A€ is in F*, and if A* and B* are in F*, then
A* + B* is in F*. It is easy to show that any function A* in F* is an integer-
valued function defined on 2. It is the extension from indicator functions
to integer-valued functions that justifies calling the elements of F* extended
indicator functions.

The qualitative probability ordering must be extended from F to F*, and the
intuitive justification of this extension must be considered. Let A* and B* be
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two extended indicator functions in 7*. Then, to have A* = B* is to have the ex-
pected value of A* equal to or greater than the expected value of B*. As should
be clear, extended indicator functions are just random variables of a restricted
sort. The qualitative comparision is now not one about the probable occur-
rences of events, but about the expected value of certain restricted random vari-
ables. The indicator functions themselves form, of course, a still more restricted
class of random variables, but qualitative comparison of their expected values
is conceptually identical to qualitative comparison of the probable occurrences
of events.

There is more than one way to think about the qualitative comparison of the
expected value of extended indicator functions, and so it is useful to consider
several examples.

(i) Suppose Smith is considering two locations to fly to for a weekend va-
cation. Let A; be the event of sunny weather at location i and B; be the event
of warm weather at location i. The qualitative comparision Smith is interested
in is the expected value of A{ + B{ versus the expected value of AS + BS. It
is natural to insist that the utility of the outcomes has been too simplified by
the sums A 4 B{. The proper response is that the expected values of the two
functions are being compared as a matter of belief, not value or utility. Thus it
would seem quite natural to bet that the expected value of A{ +BS will be greater
than that of A5 + B, no matter how one feels about the relative desirability of
sunny versus warm weather. Put another way, within the context of decision
theory, extended indicator functions are being used to construct the subjective
probability measure, not the measurement of utility. In this context it is worth
recalling the importance of certain special decision functions — the gambles —
in Savage’s theory.

(ii) Consider a particular population of » individuals, numbered 1, ..., n.
Let A; be the event of individual i going to Hawaii for a vacation this year, and
let B; be the event of individual / going to Acapulco. Then define

n n
A*=) A{ and B'=) B
i=1 i=1
Obviously A* and B* are extended indicator functions — we have left implicit
the underlying set 2. It is meaningful and quite natural to qualitatively compare
the expected values of A* and B*. Presumably such comparisons are in fact of
definite significance to travel agents, airlines, and the like.

We believe that such qualitative comparisons of expected value are natural
in many other contexts as well. What the main theorem of this article shows is
that very simple necessary and sufficient conditions on the qualitative compar-
ison of extended indicator functions guarantee existence of a strictly agreeing,
finitely additive measure, whether the set €2 of possible outcomes is finite or
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infinite. Moreover, when it is required that the measure also be an expectation
function for the extended indicator functions, it is unique. The proof of the
theorem, it should be mentioned, depends directly upon the theory of extensive
measurement developed in Chapter 3 of Krantz ef al. (1971).

2. FORMAL DEVELOPMENTS

The axioms are embodied in the definition of a qualitative algebra of extended
indicator functions. Several points of notation need to be noted. First, Q¢ and
@° are the indicator or characteristic functions of the set 2 of possible outcomes
and the empty set @, respectively. Second, the notation nA* for a function in
JF* is just the standard notation for the (functional) sum of A* with itself n
times. Third, the same notation is used for the ordering relation on F and F*,
because the one on F* is an extension of the one on F: for A and B in F,

A= Biff A = B°.

Finally, the strict ordering relation > is defined in the usual way:
A* > B* iff A* > B* and not B* = A*.

DEFINITION Let Q2 be a nonempty set, let F be an algebra of sets on 2, and
let = be a binary relation on F*, the algebra of extended indicator functions
relative to F. Then the qualitative algebra (2, F*, =) is qualitatively satis-
factory if and only if the following axioms are satisfied for every A*, B*, and
C*in F*:

Axiom 1. The relation = is a weak ordering of F*;

Axiom 2. Q¢ = Q°:

Axiom 3. A* = Q°;

Axiom 4. A* = B* iff A* + C* = B* + C*;

Axiom 5. IfA* = B* then for every C* and D* in F* there is a positive integer

n such that

nA* + C* =nB* + D*.

These axioms should seem familiar from the literature on qualitative prob-
ability. Note that Axiom 4 is the additivity axiom that closely resembles de
Finetti’s additivity axiom for events: [f ANC = BNC = @, then A = B iff
AUC = BUC. As we move from events to extended indicator functions, func-
tional addition replaces union of sets. What is formally of importance about
this move is seen already in the exact formulation of Axiom 4. The additivity
of the extended indicator functions is unconditional — there is no restriction
corresponding to ANC = BN C = @. The absence of this restriction has
far-reaching formal consequences in permitting us to apply without any real
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