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Preface

Composite materials are increasingly used in aerospace, under water, and
automotive structures. The application of composite materials to engineering
components has spurred a major effort to analyze structural components made
from them. Composite materials provide unique advantages over their metallic
counterparts, but they also present complex and challenging problems to analysts
and designers. To take advantage of the full potential of composite materials,
structural analysts and designers must have accurate mathematical models and
design methods at their disposal. The most common structural elements are plates
and shells. An accurate modelling of stress fields and failures is of paramount
importance in the design of such components.

The present monograph has the objective of introducing the mechanics concepts,
structural theories, and finite element models of composite laminates. Detailed
coverage of the basic mechanics of composite materials, theories of composite plates
and shells, and the finite element method are avoided in the interest of providing
a general background necessary for engineers to analyze composite structures.

The authors are very grateful to Professor G. M. L. Gladwell of the University
of Waterloo for his technical as well as editorial comments and for suggesting
improvements. It is a pleasure to acknowledge the help of Mr. Y. S. N. Reddy
(Virginia Polytechnic Institute and State University) in reading the manuscript
and offering useful suggestions during the preparation of the manuscript. The
authors also wish to thank Dr. Nigel Hollingworth (Kluwer) for the encouragement
and support in publishing the monograph. The authors are very thankful to
Mrs. Vanessa McCoy of the Department of Engineering Science and Mechanics,
Virginia Polytechnic Institute and State University, Blacksburg, for typing of the
manuscript. Without the patience and cooperation of Mrs. McCoy, it would not
have been possible to publish this monograph.
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Chapter One

QOverview

1.1 Introduction

The phrase ‘composite material’ refers to a material that is formed by com-
bining two or more materials on a macroscopic scale. Structures made of such
materials are called composite structures. Composite materials are fabricated to
have better engineering properties than the conventional materials, for example,
metals. Some of the properties that can be improved by forming a composite
material are: stiffness, strength, weight, corrosion resistance, thermal properties,
fatigue life and wear resistance. Most man-made composite materials are made
from two materials: a reinforcement material and a parent or matrix material.
Composite materials are finding applications in a variety of systems; including air-
craft and submarine structures, space structures, automobiles, sports equipment,
medical prosthetic devices, and electronic circuit boards. They are most suitable
in applications that require high strength-to-weight and stiffness-to-weight ratios.
With the increased use of fiber-reinforced composites in structural components,
studies involving the behavior of components made of composites are receiving
considerable attention. Functional requirements and economic considerations of
design are forcing engineers to seek reliable and accurate yet economical methods
of determining static and dynamic characteristics of the structural components.

The analytical study and design of composite materials requires knowledge
of anisotropic elasticity, structural theories and failure/damage criteria. Unlike
isotropic materials, anisotropic materials exhibit complicated mechanical behavior.
For example, consider rectangular blocks of isotropic and anisotropic (monoclinic)
materials. When an isotropic block is subjected to pure shear stress, it develops
only shear strain and no normal strains. Similarly, if an isotropic block is subjected
to normal stress, it develops only normal strain and no shear strains. Under

1



Analysis of Composite Laminates 2

identical loads, a block made of an anisotropic material deforms differently from
an isotropic block , as shown in Fig. 1.1-1. When a shear stress is applied to an
anisotropic body, it develops normal strains in addition to shear strain; a normal
stress similarly produces shear strain as well as normal strain.

Normal stress Shear stress

1T

rN———-

Isotropic material

| A |

|
|
|
|
|
I
—

—— — —

bill

Anisotropic material

| Ep———— |

Figure 1.1-1 Deformation of isotropic and anisotropic material elements sub-
jected to normal and shear stresses (broken lines denote unde-

formed geometry).

Most real world problems involving composite structures do not admit exact
solutions, requiring one to find approximate, but representative solutions. The
finite element method is an effective approximate method of obtaining numerical
solutions to boundary-value, initial-value and eigen-value problems. The method
is the most powerful numerical tool available today for predicting the response of
composite structures. In the formulation and analysis of any mathematical model



3 Overview

of a physical process, we should include all appropriate details consistent with the
objective of the study. For example, representation of true loads and boundary
conditions can be achieved to any desired closeness in a numerical model. How-
ever, the representation of material properties [physical constants] is inevitably
an approximation which demands careful physical measurements. Gross approx-
imation of some parameters and accurate representation of others does not lead
to realistic modeling of the overall problem. One must accurately represent the
kinematics of deformation as well as the material behavior.

1.2 Present study

The objective of this monograph is to present the laminated plate theories
and their finite element models to study the deformation, strength and failure
of composite structures. Emphasis is placed on engineering aspects, such as the
analytical descriptions, effective analysis tools, modeling of physical features, and
evaluation of approaches used to formulate and predict the response of composite
structures.

We share our experiences in terms of guidelines and recommendations through-
out the book, while focussing on fundamental aspects of finite element modeling
of composite laminates. One may consult the list of references provided at the end
of each chapter to gain further insight into mechanics and materials aspects and
for advanced modeling of composites structures (see [1-8] and references therein).

Chapter 2 is devoted to the introduction of the definitions and terminology
used in composite materials and structures. Anisotropic constitutive relations and
laminate plate theories are also reviewed. Finite element models of laminated
composite plates are presented in Chapter 3. Numerical evaluation of element co-
efficient matrices, postcomputation of strains and stresses, and sample examples
of laminated plates in bending and vibration are discussed. Chapter 4 introduces
damage and failure criteria in composite laminates. Finally, Chapter 5 is dedi-
cated to case studies involving various aspects and types of composite structures.
Joints, cutouts, woven composites, environmental effects, postbuckling response
and failure of composite laminates are discussed by considering specific examples.
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Chapter Two
Mechanics of Composite Laminates

2.1 Introduction

Analysis of structures made of composite materials requires a knowledge of
anisotropic elasticity, an appropriate structural theory that accounts for desired
kinematics, failure criteria to determine if the structure has failed, and a numerical
method to solve the boundary-value problem associated with the structure. The
study of anisotropic elasticity and structural theories used to analyze composite
laminates constitute the topics for this chapter.

The traditional undergraduate engineering education that emphasizes isotropic
materials, e.g., metals, is neither adequate nor appropriate for analyzing this
new class of engineered material systems. If the component is a heterogeneous
anisotropic medium, we must have a proper structural theory to model the stiffness
correctly, predict the stress fields, and determine the initiation and growth mech-
anisms of different failures. Drawing analogies between isotropic and anisotropic
media, with the hope of using existing knowledge of metals and making deductions
from them, can lead to incorrect results and conclusions.

In the present study, we shall focus on the fundamentals of anisotropic elas-
ticity and a study of the mechanics of composite laminates. We will review basic
assumptions, study constitutive relations of composite materials, and derive struc-
tural theories of composite laminates.

2.2 Anisotropic elasticity
2.2—-1 Definitions

Since we seek a fundamental understanding of the mechanics of composites
materials, we will start with the study of their constitutive behavior. First, we
identify the differences between homogeneous and heterogeneous material systems.

5



Analysis of Composite Laminates 6

A material is said to be homogeneous if the material properties remain unchanged
throughout. In a heterogeneous system, the material properties are a function of
position.  Next, we distinguish between isotropic and anisotropic materials. A
material is said to be isotropic if all its material properties at a point are indepen-
dent of the direction. That is, if one refers to point A in an isotropic medium of
Figure 2.2-1 with a coordinate system with its origin at A, the physical properties
at A will remain invariant for any arbitrary rotation of axes. An anisotropic ma-
terial is one which exhibits material properties that are directionally dependent,
i.e., a given material property can have different values in different directions. We
shall discuss various special cases of anisotropic materials in the next section. Note
that a material can be isotropic and homogeneous, isotropic and heterogeneous (or
inhomogeneous), anisotropic and homogeneous, or anisotropic and heterogeneous.

2.2—-2 Constitutive relations

In a three-dimensional Cartesian coordinate system (see Figure 2.2-2), it is
customary to describe the state of deformation by six components of strain and
stress, namely, three normal and three shear components. A linear relation be-
tween the six stresses and six strains is known as the generalized Hooke’s law, and
it can be expressed as,

os = Oy [k =132yx5 6) (2.2 -1)

where Cj; are known as the elastic coefficients. Note that (2.2-1) is an abbrevia-
tion of the proper tensor form of Hooke’s law, namely (see [1-5]),

Oij = Cijkt €kt

When Cjy; are functions of position the material is heterogeneous, and when they
are constant throughout the material it is homogeneous. We note that Cj; are
entries in the k-th row and j-th column of a 6 x 6 square matrix; however, C};
are not components of a second-order tensor. Also note that the single subscript
notation for stress and strain components is based on the convention,

01 =011, O3 =023, 03 = 033, 04 = 033, 05 = 013, 0 = 01
€1 = €11, € = €2, €3 = €33, €4 = 2623, €5 = 2€13, €5 = 2€13 (2.2 — 2)

Here (01,02,03) denote the normal stresses and (o4, 05,06) denote shear stresses;
(01,09,06) are the inplane stresses and (o3, 04, 05) are the out-of-plane (i.e., trans-
verse) stresses. Similar terminology is used for the strain components.



