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About this preliminary edition:
notes for instructors

This book aims to do what its title suggests: present multivariable calculus from
graphical, numerical, and symbolic points of view. In doing so, we continue the
philosophy and viewpoints embodied in our two volumes on single-variable calculus,
Calculus from Graphical, Numerical, and Symbolic Points of View, also published
by Saunders College Publishing. For many more details on philosophy, strategy, use
of technology, and other issues, see either those volumes or our World Wide Web
site: http://www.stolaf.edu/people/zorn/ozcalc

Various views. We aim to focus on the main concepts of multivariable calculus:
derivative and integral in their higher-dimensional versions, linear approximation,
parametrization, vector fields and vector operations, the multivariable analogues of
the fundamental theorem of calculus, and a few geometric and physical applications.
As in our treatment of single-variable calculus, the key strategy for improving con-
ceptual understanding is to combine, compare, and move among graphical, numeri-
cal, and algebraic viewpoints.

Audience and prerequisites. The text addresses a general mathematical audience:
mathematics majors, science and engineering majors, and non-science majors. We
assume a little more mathematical maturity than for single-variable calculus, but the
presentation is not rigorous in the sense of mathematical analysis. We want students
to encounter, understand, and use the main concepts and methods of multivariable
calculus, and to see how they extend the simpler objects and ideas of elementary cal-
culus. A fully rigorous logical development belongs later in a student’s mathematical
education.

We assume that students have the “usual” one-year, single-variable calculus prepa-
ration, but little or nothing more than that. A basic familiarity with numerical inte-
gration techniques (such as the midpoint and trapezoid rules) is helpful, but it could
be developed enroute if necessary. (We do not assume that students have studied our
own texts!)

Although we stress linear functions and linear approximation, we do not assume
that students have formal experience with linear algebra. Vectors are used through-
out, but are introduced “from scratch.” Matrices are used only occasionally, mainly
in the last two chapters. Students for whom matrices are entirely new may need a lit-
tle informal help with such rudiments as matrix multiplication. A few determinants
appear in the last two chapters, but only for 2 x 2 and 3 x 3 matrices.

Technology. Technology is an important tool for illustrating and comparing graph-
ical, numerical, and symbolic viewpoints in calculus—especially in multivariable
calculus, where calculations can be messy, and where geometric intuition is harder
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to come by. Although we refer often to Maple, other programs (Mathematica, De-
rive, the TI-92, etc.) would do just as well; “translating” Maple references to other
platforms should cause little difficulty. However, we strongly recommend that stu-
dents have access to some capable and flexible technology, especially for graphical
representations.

Exercises and solutions. Exercises in multivariable calculus are often somewhat
more involved, involve more steps, and may be more open-ended than those in
single-variable calcuclus. With this in mind, the Solutions Manual provides rela-
tively complete solutions, rather than just answers, to many of the exercises. Some
of the exercises and solutions could be used to augment and extend the formal Ex-
amples in the text.

Adyvice from you. We appreciate hearing instructors’ comments, suggestions, and
advice on this preliminary edition. Suggestions received from users of preliminary
versions of our single-variable texts helped us revise them in later editions. Our
physical and e-mail addresses are below.

Arnold Ostebee and Paul Zomn
Department of Mathematics

St. Olaf College

1520 St. Olaf Avenue

Northfield, Minnesota 55057-1098

e-mail: ostebee@stolaf.edu zorn@stolaf.edu

Acknowledgements. This text was prepared with support from the National Sci-
ence Foundation (Grant DUE-9450765).
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How to use this book: notes for
students

All authors want their books to be used: read, studied, thought about, puzzled over,
reread, underlined, disputed, understood, and, ultimately, enjoyed. So do we.

That might go without saying for some books—beach novels, user manuals,
field guides, etc.—but it may need repeating for a calculus textbook. We know as
teachers (and remember as students) that mathematics textbooks are too often read
backwards: faced with Exercise 231(b) on page 1638, we’ve all shuffled backwards
through the pages in search of something similar. (Very often, moreover, our searches
were rewarded.)

A textbook isn’t a novel. It’s a peculiar hybrid of encyclopedia, dictionary, atlas,
anthology, daily newspaper, shop manual, and novel—not exactly light reading, but
essential reading nevertheless. Ideally, a calculus book should be read in all direc-
tions: left to right, top to bottom, back to front, and even front to back. That’s a tall
order. Here are some suggestions for coping with it.

Read the narrative. Each section’s narrative is designed to be read from begin-
ning to end. The examples, in particular, are supposed to illustrate ideas and
make them concrete—not just serve as templates for homework exercises.

Read the examples. Examples are, if anything, more important than theorems,
remarks, and other “talk.” We use examples both to show already-familiar
calculus ideas “in action,” and to set the stage for new ideas.

Read the pictures. We're serious about the “graphical points of view” mentioned
in our title. The pictures in this book are not “illustrations” or “decorations.”
The are an important part of the language of calculus. An ability to think
“pictorially”—as well as symbolically and numerically—about mathemati-
cal ideas may be the most important benefit calculus can offer.

Read the language. Mathematics is not a “natural language” like English or French,
but it has its own vocabulary and usage rules. Calculus, especially, relies
on careful use of technical language. Words like rate, amount, concave,
stationary point, and root have precise, agreed-upon mathematical mean-
ings. Understanding such words goes a long way toward understanding the
mathematics they convey; misunderstanding the words leads inevitably to
confusion. Whenever in doubt, consult the index.

Read the instructors’ preface (if you like). Get a jump on your teacher.

In short: read the book.



A last note

Why study calculus at all? There are plenty of good practical and “educational” rea-
sons: because it’s good for applications; because higher mathematics requires it; be-
cause it’s good mental training; because other majors require it; because jobs require
it. Here’s another reason to study calculus: because calculus is among our species’
deepest, richest, farthest-reaching, and most beautiful intellectual achievements. We
hope this book will help you see it in that spirit.

A last request

Last, a request. We sincerely appreciate—and take very seriously—students’ opin-
ions, suggestions, and advice on this book. We invite you to offer your advice, either
through your teacher or by writing us directly. Our addresses appear below.

Armold Ostebee and Paul Zorn
Department of Mathematics

St. Olaf College

1520 St. Olaf Avenue

Northfield, Minnesota 55057-1098

June, 1996
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Chapter 1

Multivariable Calculus: A First
Look

1.1 Three-dimensional space

Single-variable calculus is done mainly in the two-dimensional xy-plane. The Eu-
clidean plane, also known as R?, is the natural home of such familiar calculus objects
as the graph y = f(x), tangent lines to this graph at various points, and the various
regions whose areas we might measure by integration.

To do multivariable calculus we’ll need more room. The graph of z = f(x, y),
where f is a function of two input variables, lives in three-dimensional xyz-space.
With three dimensions to work in we’ll be able to “see” not only these graphs but
also a variety of multivariable analogues of derivatives and integrals. This section ex-
plores three-dimensional Euclidean space, also known as R?, where we’ll be spend-
ing most of our time.

In another sense, of course, we spend all of our time in R?. In everyday use, the
word “space” connotes three physical dimensions. The intuition we gain from living
in three spatial dimensions is often useful in mentally picturing and manipulating the
objects of multivariable calculus. Familiar as it is, however, three-dimensional space
poses special problems for visualization. Two-dimensional pictures (on paper or on
a computer screen) of three-dimensional objects are always more or less distorted or
incomplete. Minimizing such problems is an active science (and an art) in its own
right; doing so means carefully controlling viewpoint, perspective, shading, lighting,
and other factors.

This book’s main subject is multivariable calculus, not computer graphics® or
technical drawing, so we’ll draw pictures to illustrate ideas as simply as possible—
not necessarily to look as “lifelike” as possible. It’s worth remarking, though, that
many of the basic tools and methods of computer graphics draw directly on the very
ideas we’ll develop in this book.

Though we’ll sometimes mention
computer graphics.



We’ll occasionally use other axis
labels.

If a or b is negative, go the other
way.

There’s “room” in R3 for three
mutually perpendicular axes. R?
has room for only two.

As the name suggests.

Are you certain that 8 is the right
number? See the exercises for
more.

Be sure you agree: look carefully at

the standard picture.
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Cartesian coordinates in three dimensions

The idea of Cartesian coordinates is the same in both two and three dimensions, but
the pictures look a little different. Compare these:

Coordinates in 3-d

Coordinates in 2-d

y A0 S— g

(@b)

b ! | wsd |

1 X e b
o a
T L AN
X

Recall the formalities in the xy-plane. A Cartesian coordinate system consists of
an origin, labeled O, and horizontal and vertical coordinate axes, labeled x and y,™
passing through O. On each axis we choose a positive direction (“‘east” and “north”,
usually) and a unit of measurement (not necessarily the same on both axes).

Given such a coordinate system, every point P in the plane corresponds to one
and only one ordered pair (a, b) of real numbers, called the Cartesian coordinates
of P. The pair (a, b) can be thought of as P’s “Cartesian address”: To reach P
from the origin, move a units in the positive x-direction and b units in the positive
y-direction.*®

Coordinates in three-dimensional x yz-space work the same way—but with three
coordinate axes, labeled x, y, and z. Each axis is perpendicular to the other two.*™®
To reach the point P(a, b, c) from the origin, go a units in the positive x-direction, b
units in the positive y-direction, and c¢ units in the positive z-direction. As the figure
above illustrates, the resulting point P(a, b, c¢) can also be thought of as a corner (the
one opposite to the origin) of a rectangular solid with dimensions |a|, |b|, and |c|.

Quadrants and octants. The two axes divide the xy-plane into four quadrants,
defined by the pattern of positive or negative x- and y-coordinates. The analogous
regions in xyz-space are called octants. The first octant, for instance, consists of all
points (x, y, z) with all three coordinates positive. In the picture above, only the first
octant is visible. The picture below gives another view. There are eight octants™ in
all in xyz-space—one for each of the possible patterns (+, +, +), (—, +, +), ...,
(=, —, —) of signs of the three coordinates.**

Coordinate planes. One can think of the first octant as a room, with the origin at
the lower left corner of the front wall. At this point, three walls meet, all at right
angles. These “walls” are known as the coordinate planes: the yz-plane (the front
wall), the xy-plane (the floor), and the xz-plane (the left wall).*® These coordinate
planes correspond to simple equations in the variables x, y, and z. The yz-plane, for
example, is the graph of the equation x = 0, i.e., the set of all points (x, y, z) that
satisfy this equation. The xy- and xz-planes, similarly, are graphs of the equations
z=_0and y = 0, respectively.
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Many possible views. The xy-plane, being “flat,” is relatively easy to draw. Simu-
lating three-dimensional space on a flat page or computer screen is, of course, much
harder, and there is always some price to be paid in distortion. For instance, the x-,
y-, and z-axes are, in 3-d reality, all perpendicular to each other, but no flat picture
can really show this. The axes shown below, for instance, don’t make right angles on
the page:™

Three-Dimensional Coordinates

z

0,2,1)

(3,2,1)

(3,2,0)

The picture’s view of xyz-space is somewhat different from that above. Observe:

Horizontal and vertical. The xy-plane (in which the shaded “floor tiles” lie) is
drawn to appear horizontal. The z-axis is vertical; the positive direction is
up. This is a standard convention; we’ll follow it consistently.

Hidden lines. The dashed lines in the picture lie “below” the xy-plane. They
would be hidden from view if the xy-plane—the “floor”—were opaque.
How much of xyz-space is considered visible is a matter of choice. Some-
times, only the first octant is shown.

Positive directions. An arrow on each axis indicates the positive direction. In
particular, the 3 x 2 block of shaded squares lies in the first quadrant of the
xy-plane. The other shaded squares lie in the plane’s fourth quadrant.

Plotting points: positive and negative coordinates. Any point P(a, b, c) is plot-
ted the same way: from the origin move a, b, and c units in the positive x-,
y-, and z-directions, respectively. Negative coordinates cause no special
problem—just move the other way.

Where’s the viewer? The picture is drawn as though the viewer were floating
somewhere above the fourth quadrant of the xy-plane.® In the previous 3-
d picture, by contrast, the viewer floats somewhere above the first quadrant.

There’s nothing sacred about either viewing angle; we’ll use various view-
points as we go along. So, for that matter, do the various computer plotting
packages readers may have at hand.

Study this picture carefully; it’s
worth the effort.

Think about this. Do you agree?



Computer, calculator, pencil, sharp
stick, .. . .

Or from Q to P—it doesn’t matter.

In either two or three dimensions,
the distance formula reflects the
Pythagorean rule. See the exercises
for more details.
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No perspective. To a human viewer, rectangular boxes like those above would
appear “in perspective”; the sides would seem to taper toward a vanishing
point. The closer the viewer, the more pronounced these effects would be.
For the sake of simplicity, we ignore perspective effects in the picture above,
(and elsewhere in this book). In effect, the viewer is assumed to be very,
very far from the origin, perhaps looking through a telescope.

There is no single “best” picture of a 3-d object; choosing a good or convenient view
may depend on properties of the object, what needs emphasis, or even on the drawing
technology at hand.*®

Distance and midpoints

Let P(xy, y1) and Q(x2, y2) be any two points in the xy-plane. Recall that the dis-
tance from P to Q** is given by the familiar “Pythagorean” formula

d(P, @) = /(x2 = x1)2 + (32 — )2,
and that the midpoint M of the segment joining P to Q has these “averaged” coor-

dinates:
x1+x2 y1+y2
M=——, ———).
(5= 232)

The formulas in three dimensions aren’t much different:

Definition: The distance between P (x|, yi, z1) and Q(x2, y2, 22)
is

d(P,Q) = \/(X2—X|)2+(y2 —y)?% + (22 — 21)2

The midpoint of the segment joining P and Q has coordinates

M x1+x2 yi+y2 z1+22
2 7 2 72 '

Both definitions are simply three-dimensional variations of the corresponding
formulas in the xy-plane. In both two and three dimensions, for example, distance is
computed as the square root of the sum of the squared differences in coordinates.*™

®m Example 1. Consider the points P(0, 0, 0) and Q(2, 4, 6). Find the distance from

P to Q and the midpoint M of the segment joining them. How far is M from P and
from Q?

Solution: By the distance formula,

d(P, Q) =2 —-0)2+ (4 —0)2 + (6 — 0)2 = /56 ~ 7.483.

The midpoint, according to the formula, is M(1, 2, 3)—each coordinate of M splits
the difference between the corresponding coordinates of P and Q. To see why M
deserves the name “midpoint,” notice that

d(P,M) = J(1-=0)2+2-0)2+(3—-0)2
= J2-1)2+@-22+ (6-3)2 =14 ~3.742.

Thus M lies—as a midpoint should—halfway between P and Q. O
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Equations and their graphs

The graph of an equation in x and y is the set of all points (x, y) that satisfy the

equation. The graph of x2 + y2 = 1, for instance, is a circle of radius one in the

xy-plane, centered at the origin. The graph of the equation x = 0 is the y-axis.™ The graph of an equation may or
The same idea applies for three variables: the graph of an equation in x, y, and z Ay "0." be "l’e ,E“’P’: 0; a f'-:fw"'o"-

is the set of points (x, y, z) in space that satisfy the equation. Here, graphically, are gm::.m cheie It ok aianeson

three simple examples (only the first octant is shown):

Three simple graphs

x=0 z=3 y=
z z z

3

X X X

Solutions of the equation x = 0 are points of the form (0, y, z), so the graph is the

yz-plane. Similarly, solutions of z = 3 are all points of the form (x, y, 3), so the

graph is a horizontal plane, floating 3 units above the xy-plane. The graph of y = 2

is parallel to the xz-plane, but moved two units in the positive y-direction.
Notice that in each case above, the graph of an equation in x, y, and z is a

plane—a two-dimensional object. By comparison, the graph of one equation in x

and y is usually a curve or a line—a one-dimensional object. The pattern is the same

in both cases: the graph of an equation has dimension one less than the number of

variables.” Watch for this pattern as we go
A few special types of graphs in xyz-space deserve special mention. along.

Planes

A linear equation is one of the form ax + by + cz = d, where a, b, ¢, and d
are constants, with at least one of a, b, and ¢ nonzero.” All three equations plotted What goes wrong if
above are linear; they illustrate an important general fact: a=b=c=0?

The graph of any linear equation is a plane.

(We’ll explain this fact carefully in a later section.) To draw planes in xyz-space,
we’ll use the the fact that a plane is uniquely determined by three points (unless the
points happen to be on a straight line).

B Example 2. Plot the linear equation x + 2y + 3z = 3 in the first octant.

Solution: First we’ll find some points (x, y, z) that satisfy x + 2y + 3z = 3. This
is, if anything, too easy—there are infinitely many possibilities. Given any values
for x and y, the equation determines a corresponding value for z. If, say, x = 1 and
y = 1, then x + 2y + 3z = 3 can hold only if z = 0. Similarly, setting y = 2
and z = 3 forces x = —10.® Among all possible solutions, here are three of the Check this calculation.
simplest:
P(3,0,0); Q(,3/2,0); R(0,0,1).



Not every line in the xy-plane
intercepts both axes; not every
plane in space intercepts all three
axes. See the exercises for more on
this.

Different planes give different
traces.

See the picture.

Do you see this line in the picture?
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These solutions are both easy to find (set two coordinates to zero and solve for the
third) and easy to plot (they lie on the coordinate axes). Now we can plot our plane:

A plane in the first octant: x+2y+3z=3

y

Notice:

Intercepts. A typical line in the xy-plane has x- and y-intercepts, where the line
intersects the coordinate axes. In a similar sense, a typical plane in xyz-
space has x-, y-, and z-intercepts. In the picture, the intercepts are P, Q,
and R.**

Traces. If we “slice” a surface in xyz-space with a plane, the intersection of the
surface with the plane is called the trace of the surface in that plane.*™ The
plane p shown above meets each of the three coordinate planes in a straight
line. These three lines, therefore, are the traces of the surface x+2y+3z = 3
in the xy-plane, the xz-plane, and the yz-plane, respectively.™

It’s easy to find equations for these traces. For example, a point (x, y, z)
lies both in the plane p and in the xy-plane if and only if if satisfies both
x +2y+3z = 3 and z = 0. Setting z = 0 in the first equation gives
x + 2y = 3—as expected, the equation of a line in the xy-plane. This line,
therefore, is the trace of p in the xy-plane.*®

O

Spheres

In the plane, a circle of radius r > 0, with center C(a, b) is the set of points P(x, y)
at distance r from (a, b). Translating this description into symbolic language pro-
duces the familiar formula for a circle in the plane:

dP,C) = J(x—aP2+(y—b2=r, or (x—a)+(y—b)?=r2.

(Squaring both sides does no harm, and simplifies the equation’s appearance.)

The analogous object in space to a circle in the plane is a sphere of radius r. Like
a circle, a sphere is “hollow,” similar to the skin of an orange. Adding the interior
(the edible part of the orange) produces a ball. Like a circle, a sphere is the set of
points at some fixed distance—the radius—from a fixed center point. Given a radius
r > 0 and a center point C(a, b, c¢), the sphere of radius r, centered at C, is the set
of points (x, y, z) such that

d(P‘C)z\/("—a)2+()’-b)2+(z—c)2=r,
or (x—a)Y+(y—b>+@—c)?=r’
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The simplest example, the unit sphere, has center (0, 0, 0) and radius 1; its equation
reduces to this simple form:

x24y?4+22=1.

Drawing circles in the xy-plane is easy, even by hand. Drawing spheres (or any

“curved” objects, for that matter) convincingly by hand is much harder.® Fortu- For starters, circles in space don’t
nately, rough sketches usually suffice. always look circular. Depending on

Completing the square may reveal an equation’s spherical form. ;?;c‘:fl:‘g;i .a"g’e’ gy ey gk

m Example 3. Is the graph of x2 — 2x + y2 — 4y 4 z2 — 6z = 0 a sphere? Which
one?
Solution: Completing the square in each variable separately gives™ Check each step.
x2—2x+y2—4y+zz—6z = 0 <
=224+ D+ -4y + )+ (2 -624+9) = 1+4+9
-0+ -2*+@@-3)7 = 14

The last form shows that our equation describes the sphere of radius /14, centered
at (1, 2, 3). As the equation shows, this sphere passes through the origin. The picture
shows this, too:

Graph of x"2-2x+y"2-4*y+z"2-6z=0

N
F O O T O

Cylinders

What is the graph of the equation y = x?? The answer depends on where we’re
working. In the xy-plane, the graph is the familiar parabola—all points of the form
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(x, x2). Here's the graph of the same equation in xyz-space:

Graph of y=x"2 in xyz-space

Notice:

A missing variable. The graph is unrestricted in the z-direction—it contains all
In other words, the graph has points that lie directly above or below the graph of y = x? in the xy-plane.*

“vertical walls.” . . L .
The graph has this property, of course, because z is “missing” in the equa-

tion y = x2. This means that if (x, y) satisfies the equation, then so does
every point (x, y, z)—regardless of the value of z.

What’s a cylinder? Graphs like this one, in which one (or more) of the variables
is unrestricted, are called cylinders. Any equation that omits one or more
variables—y = z, say—has a cylindrical graph. Plotting cylinders is com-

’ . . . : - . . .
“Easy” is a relative thing—drawing paratively easy.” If the equation involves only y and z, for instance, we
anything in xyz-space poses certain first plot the equation in the yz-plane, and then “extend” the graph in the
chilicages. x-direction.

In everyday speech, “cylinder” usually means a circular tube. As the next exam-
ple illustrates, the mathematical idea of a cylinder is much more general.

B Example 4. Discuss the graph in xyz-space of the equation z = 2 + sin y. Inter-
pret the result as a cylinder.

Solution: There’s no variable x in the equation, so the graph is unrestricted in the

The surface, like many graphs, x-direction—i.e., it’s a cylinder in x. Here’s a representative view:*™
continues forever; a picture shows
only part of the graph.



