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Preface

Since the origin of graph theory with Euler, people have liked graph theory, because
it is a delightful playground for the exploration of proof techniques without much
previous background needed. With the application of graph theory to many areas of
computing, social, and natural sciences, the importance of graph theory has been
recognized. For this reason, many good graph theoretic results have been developed
in recent years. It is almost impossible to write a book that covers all these good graph
theories.

The architecture of an interconnection network is always represented by a graph,
where vertices represent processors and edges represent links between processors.
It is almost impossible to design a network that is optimum from all aspects. One
has to design a suitable network depending on its properties and requirements. Thus,
many graphs are proposed as possible interconnection network topologies. Thus, these
graphs can be referred to as good graphs. For this reason, the theory of interconnection
networks is referred to as good-graph theory.

Thus, we need some basic background in graph theory to study interconnection
networks. The first 10 chapters cover those materials presented in most graph theory
texts and add some concepts of interconnection networks. Later, we discuss some
interesting properties of interconnection networks. Sometimes, these properties are
too good to be true—so the beginner finds them hard to believe. Such properties
can be observed from interconnection networks, diameter, connectivity, Hamiltonian
properties, and diagnosis properties. We can also study these properties in general
graphs.

Ends of proofs are marked with the symbol (. This symbol can be found directly
following a formal assertion. It means that the proof should be clear after what has
been said. There are also some theorems that are stated, without proof, via back-
ground information. In this case, such theorems are stated without proofs and the
symbol [J.

The main purpose of this book is to share our research experience. Our experience
tells us that much background is not needed for doing research. Looking for a proper
theme is a difficult problem for research. We are just lucky in finding problems. For
this reason, we put some of our results at the end of each chapter but we do not put any
exercises in this book. We observed that all the material, contents, and exercises in
every book are exercises of previous books. For this reason, we hope that the readers
can find their own exercises.

It is a great pleasure to acknowledge the work of Professor Jimmy
JM. Tan. We have worked together for a long time. Yet, at least one-third
of this book is his contribution. We also thank all the members of the Com-
puter Theory Laboratory of National Chiao-Tung University: T.Y. Sung, T. Liang,
H.M. Huang, Chiuyuan Chen, Y.C. Chuang, S. S. Kao, Y.C. Chang, T.Y. Ho,
R.S. Chou, C.N. Hung, J.J. Wang, S.Y. Wang, C.Y. Lin, C.H. Tsai, J.Y. Hwang,
C.P. Chang, J.N. Wang, J.J. Sheu, C.H. Chang, T.K. Li, W.T. Huang, Y.C. Chen,

xi
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H.C. Hsu, K.Y. Liang, Y.L. Hsieh, M.C. Yang, PL. Lai, L.C. Chiang, Y.H. Teng,
C.M. Sun, and K.M. Hsu.

We also thank CRC Press for offering us the opportunity of publishing this book.
Lih-Hsing Hsu also thanks his advisor, Professor Joel Spencer, for entering the area
of graph theory. We also thank Professor Frank Hsu for strongly recommending to us
the area of interconnection networks. Finally, we thank all of our teachers; without
their encouragement, this book could never have been written.
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‘I Fundamental Concepts

1.1 GRAPHS AND SIMPLE GRAPHS

A graph G with n vertices and m edges consists of the vertex set V(G) = {v, v, . . ., Un}
and edge set E(G) = {e), e, . . ., e,y}, Where each edge consists of two (possibly equal)
vertices called, endpoints. An element in V(G) is called a vertex of G. An element in
E(G) is called an edge of G. Because graph theory has a variety of applications, we
may also use a node for a vertex and a link for an edge to fit the common terminology
in that area. We use the unordered pair (u, v) for an edge e = {u, v}. If (u, v) € E(G),
then u and v are adjacent. We write u <> v to mean u is adjacent to v. A loop is an edge
whose endpoints are equal. Parallel edges or multiple edges are edges that have the
same pair of endpoints. A simple graph is a graph having no loops or multiple edges.
For a graph G = (V, E), the underlying simple graph UG is the simple graph with
vertex V and (x, y) € E(UG) if and only if x #y and (x,y) € E. A graph is finite if its
vertex set and edge set are finite. We adopt the convention that every graph mentioned
is finite.

We illustrate a graph on paper by assigning a point to each vertex and drawing
a curve for each edge between the points representing its endpoints, sometimes omit-
ting the name of the vertices or edges. In Figure 1.1a, e is a loop and f and g are
parallel edges. Figures 1.1b and 1.1c illustrate two ways of drawing one simple graph.

The order of a graph G, written n(G), is the number of vertices in G. An n-vertex
graph is a graph of order n. The size of a graph G, written ¢(G), is the number of
edges in G, even though we also use e by itself to denote an edge. The degree of
a vertex v in a graph, written degg;(v), or deg(v), is the number of nonloop edges
containing v plus twice the number of loops containing v. The maximum degree of G,
denoted by A(G), is max{deg(v) | ve€ V(G)} and the minimum degree of G, denoted
by 8(G), is min{deg(v) | v € V(G)}. A graph G is regular if A(G) = 8(G), and k-regular
if A(G)=68(G)=k. A vertex of degree k is k-valent. The neighborhood of v, written
Ng(v) or N(v), is {x € V(G) | x <> v}; x is a neighbor of v if x € N(v). An isolated
vertex has a degree of 0.

A directed graph or digraph G consists of a vertex set V(G) and an edge set E(G),
where each edge is an ordered pair of vertices. We use the ordered pair (u, v) for the
edge uv, where u is the fail and v is the head. (Note that the notation (i, v) is used both
as an unordered pair in an unordered graph and as an ordered pair in a directed graph.
However, it is easy to distinguish each from the other from the context.) Sometimes,
we may use the term arc for an edge of a digraph. We write u — v when (u, v) € E(G),
meaning there is an edge from u to v. A simple digraph is a digraph in which each
ordered pair of vertices occur at most once as an edge. For a digraph G = (V, E), the

1



2 Graph Theory and Interconnection Networks

(@) (b) (c)

FIGURE 1.1 Examples of graphs.

FIGURE 1.2 A digraph.

underlying graph UG is the simple graph with the vertex set V and (x,y) € E(UG) if
and only if x # y and either (x, y) € E(G) or (y,x) € E(G).

The choice of head and tail assigns a direction to an edge, which we illustrate by
assigning edges as arrows. See Figure 1.2 for an example of a digraph. Sometimes,
weights are assigned to the edges of graphs or digraphs. Thus, we have weighted
graphs, weighted digraphs, (unweighted) graphs, and (unweighted) digraphs.

Graphs arise in many settings, which suggests useful concepts and terminologies
about the structure of graphs.

ExamPLE 1.1

A famous brain-teaser asks: Does every set of six people have three mutual acquaintances
or three mutual strangers?

Because an acquaintance is symmetric, we can model it by a simple graph having
a vertex for each person and an edge for each acquainted pair. The nonacquaintance
relation on the same set yields another graph. The complement G of a simple graph G
with the same vertex set V(G) is defined by (u, v) € E(G) if and only if (u, v) ¢ E(G).
In Figure 1.3, we draw a graph and its complement.

Let two graphs equal G = (V(G), E(G)) and H =(V(H), E(H)). We say that H is a
subgraph of G or G is a supergraph of H if V(H) C V(G) and E(H) C E(G); we write
H C G and say that G contains H. In particular, H is called a spanning subgraph of
G or G is a spanning supergraph of H if H is a subgraph of G and V(H) =V(G).

Let G=(V, E) be a graph and S be a subset of V. The subgraph of G induced by
S, denoted by G[S], is the subgraph with vertex set S and those edges of G with both
ends in S. In particular, the graph G[V — S] is denoted by G — S. Let v be a vertex of
G. We use G — v to denote G — {v}. Let F be a subset of E. The subgraph generated
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FIGURE 1.3 A graph and its complement.

by F, denoted by G, is the subgraph of G with F as its edge set and {v | v is incident
with some edge of F'} as its vertex set. The subgraph G — F denotes the subgraph of
G with V as its vertex set and £ — F as its edge set. Let e be an edge of E. The graph
G — {e} is denoted by G — e.

A complete graph or clique is a simple graph in which every pair of vertices is an
edge. A complete graph has many subgraphs that are not cliques, but every induced
subgraph of a complete graph is a clique. The complement of a complete graph has
no edges.

An independent set in a graph G is a vertex set S C V(G) that contains no edge of
G (that is, G[S] has no edges). In the graph G shown in Figure 1.3, the largest clique
and the largest independent set have cardinalities three and two, respectively. These
values reverse in the complement G, because cliques become independent sets (and
vice versa) under complementation. Our six-person brain-teaser asks whether every
six-vertex graph has a clique or an independent set of size 3. It is worthwhile to verify
this statement. The generalization of the six-person brain-teaser leads the Ramsey
Theory [128].

ExaMPLE 1.2

Suppose that we have m jobs and n people, and each person can do some of the jobs. Can
we make assignments to fill the jobs? We model the available assignments by a graph H
having a vertex for each job and each person, putting job j adjacent to person p if pcan do.

A graph G is bipartite if V(G) is the union of two disjoint sets such that each edge
consists of one vertex from each set. The graph H of available assignments is bipartite,
with the two sets being the people and the jobs. Because a person can do only one job
and we assign a job to only one person, we seek m pairwise disjoint edges in H.

A complete bipartite graph, illustrated in Figure 1.4, is a bipartite graph whose
edge set consists of all pairs having a vertex set from each of two disjoint sets covering
the vertices. When the assignment graph H is a complete bipartite graph, pairing up
vertices is easy, so we seek the best way to do it. We can assign numerical weights on
the edges to measure desirability. The best way to match up the vertices is often the
one where the selected edges have maximum total weight.



