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PREFACHE

The goal of this book is to provide a geometric experience which clarifies,
extends, and unifies concepts generally discussed in traditional high school
geometry courses and to present additional topics that assist in gaining a
better understanding of elementary geometry. As its title Roads to Geome-
try indicates, this book is designed to provide the reader with a “*“map’’ for a
voyage through plane geometry and its various branches. As prerequisites,
this book assumes only a prior course in high school geometry and the
mathematical maturity usually provided by a semester of calculus or discrete
mathematics.

Preparations for this voyage begin in Chapter 1 with a discussion of the
“Rules of the Road’” in which the reader is familiarized with the properties
of axiomatic systems and application of the axiomatic method to investiga-
tions of these systems. A discussion of several examples of finite and inci-
dence geometries provides a framework within which we may investigate
plane geometry.

With these preparations complete, the voyage commences in Chapter 2
where we are confronted with ‘*‘Many Ways to Go.”’ Here, within a histori-
cal perspective, we travel a variety of ‘‘roads’’ through geometry by investi-
gating different axiomatic approaches to the study of Euclidean plane geom-
etry. Axiomatic developments of geometry as proposed by Euclid, David
Hilbert, G. D. Birkhoff, and the School Mathematics Study Group (SMSG)
are compared and contrasted.

In Chapter 3, ‘‘Traveling Together,”” we investigate the content of
neutral geometry. The SMSG postulates provide our pedagogical choice for
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a ‘‘main arterial’’ as we prepare ourselves for the choice between the Euclid-
ean and non-Euclidean “‘exits’’ that appear on the horizon.

Chapter 4 provides ‘“One Way to Go™ as we explore the Euclidean
plane. In this chapter we extend ideas developed in neutral geometry and
provide a traditional look at the geometric topics of congruence, area, simi-
larity, circles, and constructions from a Euclidean perspective.

While still within the Euclidean plane, Chapter 5 provides two *‘Side
Trips™’ through analytical and transformational approaches to geometry.
The real numbers, algebra, isometries, similarities, analytical transforma-
tions, and inversion and their applications to geometric theorem proving are
discussed.

In Chapter 6 we consider ‘*‘Other Ways to Go.”" We return briefly to
neutral geometry in preparation for our venture into the non-Euclidean
plane. In addition to a discussion of hyperbolic geometry, this chapter con-
tains a detailed description of the Poincaré disk model and a brief excursion
into elliptic geometry.

Finally, in Chapter 7, **All Roads Lead To . . .”" projective geome-
try. Here we delve into a more general geometry than we have studied in
previous chapters as we investigate the real projective plane and the ideas of
duality, perspectivity, and projective transformations.

This text is appropriate for several kinds of students. Preservice teach-
ers of geometry are provided with a rigorous yet accessible treatment of
plane geometry in a historical context. Mathematics majors will find its
axiomatic development sufficiently rigorous to provide a foundation for fur-
ther study in the areas of Euclidean and non-Euclidean geometry. Through
the choice of the SMSG postulate set as a basis for the development of plane
geometry, this book avoids the pitfalls of many *‘foundations of geometry™’
texts which encumber the reader with such a detailed development of pre-
liminary results that many other substantive and clegant results are inacces-
sible in a one-semester course.

The chapters of this book separate nicely into independent units. The
material in Chapters 1 and 2 provides preliminary groundwork for the study
of geometry. Instructors who feel that their classes are exceptionally well
prepared can omit these chapters in the interest of freeing time for material
presented later in the book. Instructors teaching more typical classes will
find the discussion of axiomatics in Chapter | and the comparisons of the
various axiom sets in Chapter 2 very helpful in conveying the notion of
mathematical rigor. Instructors can teach a semester of Euclidean geometry
using Chapters 1 through S, while those instructors more interested in non-
Euclidean Geometries can opt to cover Chapters 1, 2, 3, and 6.

At the end of each section is an ample collection of exercises of varying
difficulty which provide problems that both extend and clarify results of the
section as well as problems that apply those results. At the end of cach of
Chapters 3 through 7 is a summary listing all the new definitions and theo-
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rems of the chapter. In addition, a *“tear-out’’ page listing the SMSG axioms
is included in the back cover so that the student does not have to turn to an
appendix each time an axiom is invoked.

The authors hope that Roads to Geometry will in some way encourage
the reader to more fully appreciate the marvelous worlds of Euclidean and
non-Euclidean plane geometry and to that end we wish you bon voyage.

E. C. Wallace
S. F. West
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2 Rules of the Road Chap. 1

The remainder of this section briefly introduces several of the great
philosopher/mathematicians of antiquity and their roles in the birth of **de-
monstrative geometry.”

Thales of Miletus

The transformation of the study of geometry from a purely practical
science (namely, surveying) to a branch of pure mathematics was under-
taken by Greek scholars and took place over a number of centuries. The
individual most often credited with initiating the formal study of demonstra-
tive geometry as a discipline is Thales of Miletus (c. 640-546 B.C.). In his
early days Thales was a merchant, and in this capacity he traveled to Egypt
and the Middle East. He returned to Greece with a knowledge of the mea-
surement techniques used by the Egyptians at that time. The greatest contri-
bution made by Thales to the study of geometry was his ability to abstract
the ideas of the Egyptians from a physical context to a mental one. The
propositions for which he has been given credit are among the simplest in
plane geometry. For example, Proclus, in his “*Eudemian Summary,’?
stated that Thales was ‘*the first to demonstrate that the circle is bisected by
the diameter.”’? As one can see, this rather simple assertion is not notewor-
thy by virtue of its profound content. The significance of Thales’ contribu-
tion lies not in the content of the propositions themselves but in his use of
logical reasoning to argue in favor of them. Proclus describes an indirect
“‘proof”” (presumably due to Thales) to support the circle bisection theo-
rem. While Thales’ proof is not acceptable by today’s standards (and was
even avoided by Euclid) it showed, for the first time, an attempt to justify
geometric statements using reason instead of intuition and experimentation.

D. E. Smith speaks about the importance of Thales® work in geometry:
“*Without Thales there would not have been a Pythagoras—or such a Pytha-
goras; and without Pythagoras there would not have been a Plato—or such a
Plato.”™*

Pythagoras

Pythagoras (c. 572 B.c.) was born on the Greek Island of Samos before
Thales’ death and was probably a student of Thales. Pythagoras traveled
widely throughout the Mediterranean region, and it is very possible that his

? The “*Eudemian Summary™ is a small part of Proclus’ Commentary on the First Book
of Euclid in which he describes the history of Thales as given by Eudemus of Rhomes in a work
available to Proclus but which has since been lost to us.

P Glenn R. Morrow, (trans.), Proclus—A Commentary on the First Book of Euclid’s
Elements (Princeton, N.J.: Princeton University Press. 1970). p. 124,

“D. E. Smith, History of Mathematics (New York: Dover Publications, Inc.. 1958),
I, p. 68.
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journeys took him to India, since his philosophical orientation was more
closely aligned with the Indian civilization than with the Greek. On return-
ing to Europe, Pythagoras migrated to Croton, a Greek colony in southern
Italy, and established a quasi-religious brotherhood called the Pythagore-
ans. It is likely that much of the mathematics attributed to Pythagoras was
actually developed by members of this brotherhood during the 200 or so
years of its existence. The Pythagoreans took mathematical thought a step
beyond the point to which Thales had brought it. Whereas Thales had for-
malized a portion of the geometry that he encountered, the Pythagorean
philosophy was to develop mathematical results exclusively as the result of
deduction. It was during this time that “*chains of propositions were devel-
oped in which each successive proposition was derived from earlier ones.”"?
The Pythagorean school set the tone for all the Greek mathematics that was
to follow, and since the ideas of Plato were largely committed to mathemat-
ics, one could say that Pythagoras had a major effect on all of Greek philoso-
phy.

Plato

Plato’s role in the development of geometry (and of mathematics in
general) is often overshadowed by his preeminent status in Greek philoso-
phy in general. The Academy of Plato, which was established about 387
B.C., attracted the most famous scholars of the time. At the Academy the
study of mathematics was confined to pure mathematics, with the emphasis
placed on soundness of reason. One of Plato’s most famous students was
Aristotle (c. 584 B.c.), who in his work Analytica Posteriora did much to
systematize the classical logic that formed a basis for all Greek mathemat-
ics. By about 400 B.c. Greek civilization had developed to the point where
intellectual pursuits were valued for their intrinsic virtue. Plato was of the
mind that **‘mathematics purifies and elevates the soul.”® Since there was no
need for mathematicians at the Academy to concern themselves with appli-
cations of their work, the emphasis could be placed on the processes in-
volved in the development of mathematical thought rather than on worldly
products of that thought. Thus mathematics had by 350 B.c. taken on the
nature of a ‘‘pure science.”’

Euclid
The name most often associated with ancient Greek geometry is that of
Euclid. Not a great deal is known about Euclid’s background. He may have

been born in Greece, or he may have been an Egyptian who went to Alexan-

S Eves, in Historical Topics, p. 172.

* Morrow. Proclus—A Commentary, p. 25.
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dria to study and teach. He is believed to have been the first mathematics
professor at the great University of Alexandria. His lifetime overlapped that
of Plato, and he may have been a student at Plato’s academy. Proclus, in his
Commentary, tells us that Euclid was influenced by Plato’s philosophy, but
there is no direct evidence that the two ever met.

By Euclid’s time (c. 325 B.c.) the development of rational thought had
progressed sufficiently to allow for, and even demand, a systematic study of
geometry. Euclid’s monumental work, Elements of Geometry, a single
chain of 465 propositions which in part encompasses plane and solid geome-
try, has for over 2000 years, remained as the most widely known example of
a formal axiomatic system. As we will see in subsequent chapters, Euclid’s
work was far from flawless. Still its strengths far outnumber its weaknesses,
as attested by the fact that it overshadowed and replaced all previous writ-
ings in this area.

In order to place Euclid’s historic effort in context, we shall in the next
section discuss what is meant by an axiomatic system and investigate the
properties that axiomatic systems possess.

EXERCISE SET 1.1

1. As indicated earlier, Egyptian geometers used the formula A = {(a¢ + ¢)(b + d)
to calculate the area of any quadrilateral whose successive sides have lengths «a,
b, ¢, and d.

(a) Does this formula work for squares? For rectangles that are not squares?

(b) If you choose specific lengths for the sides of an isosceles trapezoid, how
does the result compare to the actual area? Repeat for two other isosceles
trapezoids. Do the same for three specific parallelograms.

(¢) Generalize your results for part (b).

2. If u and b are the lengths of the legs of a right triangle and ¢ is the length of the
hypotenuse, Babylonian geometers approximated the length of the hypotenuse
by the formula ¢ = b + (a?/2b).

(a) How does this approximation compare to the actual result when ¢ = 3 and
b =4? Whena = 5and b = 12? Whena = 12 and b = 5?

(b) Give an algebraic argument demonstrating that this formula results in an
approximation that is too large.

3. The following was translated from a Babylonian tablet created about 2600 B.c.
Explain what it means.

60 is the circumference. 2 is the perpendicular, find the chord. Double 2 and
get 4, do you see? Take 4 from 20 and get 16. Square 20, and you get 400.
Square 16. and you get 256. Take 256 from 400 and you get 144. Find the
square root of 144. 12, the square root, is the chord. This is the procedure.”

7 Howard Eves, A Survey of Geometry (Boston: Allyn and Bacon, 1965). p. 7. Problem
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4. The Moscow Papyrus (c. 1850 B.c.) contains the following problem:

If you are told: A truncated pyramid of 6 for the vertical height by 4 on the base
by 2 on the top. You are to square this 4. result 16. You are to double 4, result
8. You are to square 2. result 4. You are to add the 16, the 8, and the 4, result
28. You are to take one third of 6, result 2. You are to take 28 twice. result
56. See. it is 56. You will find it right.

Show that this is a special case of the general formula, V = $i(a> + ab + b?), for
the volume of the frustum of a pyramid whose bases are squares, whose sides are
a and b, respectively, and whose height is A.

5. An Egyptian document. the Rhind Papyrus (c. 1650 B.C.), states that the area of a
circle can be determined by finding the area of a square whose side is § of the
diameter of the circle. Is this correct? What value of = is implied by this tech-
nique”?

6. It is said that Thales indirectly measured the distance from a point on shore to a
ship at sea using the equivalent of angle-side-angle (ASA) triangle congruence
theorem. Make a diagram that could be used to accomplish this feat.

7. Eratosthenes (c. 275 B.C.), a scholar and librarian at the University at Alexan-
dria, is credited with calculating the circumference of the earth using the follow-
ing method: Eratosthenes observed that on the summer solstice the sun was
directly overhead at noon in Syene (the present site of Aswan), while at the same
time in Alexandria, which was due north, the rays of the sun were inclined 7°12’,
thus indicating that Alexandria was 7°12' north of Syene along the earth’s sur-
face. Using the known distance between the two cities of 5000 stades (approxi-
mately 530 miles). he was able to approximate the circumference of the earth.
Make a diagram that depicts this method and calculate the circumference in
stades and in miles. How does this result compare to present-day estimates?

1.2 AXIOMATIC SYSTEMS AND THEIR PROPERTIES
The Axiomatic Method

As we begin our study of geometry, it is important that we have a basic
understanding of the axiomatic method used in the development of all of
modern mathematics. The axiomatic method is a procedure by which we
demonstrate or prove that results (theorems, and so on) discovered by ex-
perimentation, observation, trial and error, or even by ‘‘intuitive insight,”
are indeed correct. Little is known about the origins of the axiomatic
method. Most historians, relying on accounts given by Proclus in his
“*Eudemian Summary,”” indicate that the method seems to have begun its
evolution during the time of the Pythagoreans as a further development and
refinement of various early deductive procedures.

In an axiomatic system the proof of a specific result is simply a se-
quence of statements, each of which follows logically from the ones before
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and leads from a statement that is known to be true to the statement which is
to be proven. First, for a proof to be convincing, it is necessary to establish
ground rules for determining when one statement follows logically from
another. For the purposes of this development, our rules of logic will
consist of the standard two-valued logic studied in most introductory logic
courses. Second, it is important that all readers of the proof have a clear
understanding of the terms and statements used in the discussion. To ensure
this clarity, we might try to define each of the terms in our discussion. If,
however, one of our definitions contains an unfamiliar term, then the reader
has the right to expect a definition of this term. Thus a chain of definitions is
created. This chain must be circular or linear (think of a concrete model).
Since circularity is unacceptable in any logical development, we may assume
that the chain of definitions is linear. Now this linear chain may be an
infinite sequence of definitions, or it must stop at some point. An unending
sequence of definitions is at best unsatisfying, so the collection of definitions
must end at some point and one or more of the terms will remain undefined.
These terms are known as the undefined or primitive terms of our axiomatic
system.

The primitive terms and definitions can now be combined into the
statements or theorems of our axiomatic system. For these theorems to be
of mathematical value, we must supply logically deduced proofs of their
validity. We now need additional statements to prove these theorems which
in turn require proof. As before, we form a chain of statements that leads us
to the conclusion that, to avoid circularity, one or more of these statements
must remain unproven. These statements, called axioms or postulates,®
must be assumed, and they form the fundamental truths® of our axiomatic
system.

To summarize, any logical development of an axiomatic system must
therefore conform to the pattern represented in Table 1.2.1.

To illustrate an axiomatic system and the relationships among its unde-
fined terms, axioms, and theorems we will consider the following example.

Example 1.2.1

A simple abstract axiomatic system. Undefined terms: Fe’s, Fo’s, and the
relation, ‘‘belongs to.”’!0

# Today, the words **axiom’” and *‘postulate’” are used interchangeably. Historically,
the word *‘postulate’” has been used to represent an assumed truth confined to a particular
subject area, while ‘*axiom™’ represents a more universal truth applicable to all areas of mathe-
matics.

° The truth of these axioms is not at issue—just the reader’s willingness to accept them
as true.

' We will occasionally use the terminology ‘‘a Fe is on a Fo™ or “‘a Fo contains a Fe,”
and by this we mean that the Fe ‘‘belongs to’’ the Fo.
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TABLE 1.2.1 The Axiomatic Method

1. Any axiomatic system must contain a set of technical terms
that are deliberately chosen as undefined terms and are sub-
ject to the interpretation of the reader.
. All other technical terms of the system are ultimately defined
by means of the undefined terms. These terms are the defini-
tions of the system.
3. The axiomatic system contains a set of statements, dealing
with undefined terms and definitions, that are chosen to
remain unproven. These are the axioms of the system.
4. All other statements of the system must be logical consequences'
of the axioms. These derived statements are called the theorems
of the axiomatic system.

(%]

Axiom 1. There exist exactly three distinct Fe’s in this system.
AxioMm 2. Two distinct Fe's belong to exactly one Fo.
AxioMm 3. Not all Fe’s belong to the same Fo.

AxioMm 4. Any two distinct Fo’s contain at least one Fe which be-
longs to both.

Fe-Fo THEOREM |. Two distinct Fo's contain exactly one Fe.

Proof. Since Axiom 4 states that two distinct Fo’s contain at least one
Fe, we need only show that these two Fo's contain no more than one Fe.
For this purpose we will use an indirect proof and assume that two Fo’'s
share more than one Fe. The simplest case of “*more than one™ is two.
Now each of these two Fe's belong to two distinct Fo's, but that in turn
contradicts Axiom 2, and we are done.

Fe-Fo THEOREM 2. There are exactly three Fo's.

Proof. Axiom 2 tells us that each pair of Fe’s is on exactly one Fo.
Axiom 1 provides us with exactly three Fe’s, and by counting distinct pairs
of Fe’s, we find that we have at least three Fo’s. Now suppose that there
exists a distinct fourth Fo. Theorem I tells us that the fourth Fo must share
a Fe with each of the other Fo’s. Therefore it must contain at least one of
the two of the existing three Fe's, but Axiom 2 prohibits this. Therefore a
fourth Fo cannot exist, and there are exactly three Fo’s.

"' Recall that it is presumed that underlying the axiomatic system is some type of logical
structure on which valid arguments are based.



