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Preface

This volume consists of the refereed papers presented at the Indonesia-Japan
Joint Conference on Combinatorial Geometry and Graph Theory (IJCCGGT
2003), held on September 13-16, 2003 at ITB, Bandung, Indonesia. This confer-
ence can also be considered as a series of the Japan Conference on Discrete and
Computational Geometry (JCDCG), which has been held annually since 1997.
The first five conferences of the series were held in Tokyo, Japan, the sixth in
Manila, the Philippines, in 2001, and the seventh in Tokyo, Japan in 2002.

The proceedings of JCDCG 1998, JCDCG 2000 and JCDCG 2002 were pub-
lished by Springer as part of the series Lecture Notes in Computer Science:
LNCS volumes 1763, 2098 and 2866, respectively. The proceedings of JCDCG
2001 were also published by Springer as a special issue of the journal Graphs
and Combinatorics, Vol. 18, No. 4, 2002.

The organizers are grateful to the Department of Mathematics, Institut Tekno-
logi Bandung (ITB) and Tokai University for sponsoring the conference. We also
thank all program committee members and referees for their excellent work. Our
big thanks to the principal speakers: Hajo Broersma, Mikio Kano, Janos Pach
and Jorge Urrutia. Finally, our thanks also goes to all our colleagues who worked
hard to make the conference enjoyable and successful.

August 2004 Jin Akiyama
Edy Tri Baskoro
Mikio Kano
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On Convex Developments of a Doubly-Covered
Square

Jin Akiyama! and Koichi Hirata?

! Research Institute of Educational Development,
Tokai University, Tokyo 151-8677, Japan
fwjb5117@mb. infoweb.ne. jp
2 Faculty of Education, Ehime University,
Matsuyama 790-8577, Japan
hirata@ed.ehime-u.ac. jp

Abstract. We give an algebraic characterization of all convex polygons
that are 2-flat foldable to a square, that is, we determine all shapes of
convex developments of a doubly-covered square.

1 Doubly-Covered Square

Let us introduce an equivalence relation on the plane E = { (z, y) |z,y € R} in
the following way.

Definition 1. We say that two points X;(z;, Y1) and Xo(za, y2) of the plane
E are equivalent if either one of the following two conditions is satisfied:

(1) The points X; and Xy are symmetric with respect to some lattice point.
Namely, the midpoint of the line segment X1 X5 is a lattice point.
(2) The point X1 can be moved to the point X5 by means of a parallel translation
given by a vector whose components are both even integers. Namely, the
= ek .
components of the vector X; Xy are both even integers.

The fact that the conditions above define an equivalence relation is obvious
since the composition of any combinations of motions, moving points to those
which are symmetric in the sense of (1) or parallel translations of the type (2),
yields again the motion of the type (1) or (2).

Lemma 1. Denote by P the quotient space obtained from E by means of the
equivalence relation introduced in Definition 1, and denote by p the quotient map
E — P. Then, P can be identified with a doubly-covered square (Fig. 1).

J. Akiyama et al. (Eds.): IJCCGGT 2003, LNCS 3330, pp. 1-13, 2005.
© Springer-Verlag Berlin Heidelberg 2005



2 J. Akiyama and K. Hirata

Proof. Let us show first that a representative of an equivalence class for the
given equivalence relation can be chosen in the set

R={(z,9)| -1<z<1,0<y<1}.
Letters k& and [ represent integers in the sequel.

(a) Any point (z, y) satisfying the conditions 2k—1 < z < 2k+1, 2i-1 <y < 2!
is equivalent to a point in R by means of a motion of the type (1) moving
points in E to those which are symmetric with respect to the point (k, [).

(b) Any point (z, y) satisfying the conditions 2k—1 < z < 2k+1, 2l < y < 2[+1
is equivalent to a point in R by means of the parallel translation of the type
(2) given by the vector (—2k, —21).

Therefore, we see that a representative of an equivalence class can be chosen
in the set R. We next investigate equivalence of the points within R by means
of the given equivalence relation. Let us represent the set R as the rectangle
ABB'A’ as in Fig. 2. No point in Int(R), the interior of R, is equivalent to
another point in R. On the other hand, there are pairs of equivalent points on
OR, the boundary of R. Two points on the line segment AA’ are equivalent if
they are symmetric with respect to the point O. Similarly, two points on the
line segment BB’ are equivalent if they are symmetric with respect to the point
C. Furthermore, a point on the line segment AB is equivalent to a point on the
line segment A’B’, if they can be moved to each other by means of the parallel
translation given by a vector of length 2 in the direction of the z-axis.

A O A x

Fig. 2 O

From these observations we conclude that the quotient space P for the equiv-
alence relation given in Definition 1 can be identified with the figure obtained by
folding the rectangle R along the line segment OC, and gluing together segments
AO and A'O, segments BC and B’C, and segments AB and A’B’. What results
is a doubly—covered square.

The following two corollaries can be proved easily.

Corollary 1. The set of all the lattice points in the plane E can be partitioned
into four equivalence classes {(odd, odd), (odd, even), (even, odd), (even, even)}
depending on the parities of the coordinates, and each of these equivalence classes
corresponds by p to each of the four vertices of P, respectively.
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Corollary 2. Let A and B be an arbitrary pair of lattice points in the plane E,
and denote by S the set of all the lattice points lying on the line segment AB.
Then p(S) consists of exactly two of the vertices of P. Namely, only two among
the four equivalence classes described in Corollary 1 can lie on a straight line.

2 Developments

Let us consider next what we mean by a development of a doubly-covered square.
We will give a definition of a development by using the quotient mapp : £ — P
introduced in the preceding section. It should be obvious that this definition
coincides with the usual definition of a development.

Definition 2. When a polygon V in the plane E satisfies the following condi-
tions (1) - (8), V is called a development of the doubly-covered square P (Fig. 3).

(1) The map p|lv : V — P, which is the restriction of p to V, is surjective.
(2) p(Int(V)) N p(8V) = 0.
(3) Plingcvy : Int(V) — P, which is the restriction of p to Int(V'), is injective.

*—» ’ \\
P @ PG
Fig. 3

The lines of folding involved in constructing P from a development V are the
lines drawn in the plane E through lattice points parallel to the z- or y-axis.

Associated with this definition, we define as follows the cut tree which appears
when a doubly-covered square P is developed into a development V.

Definition 3. Let V be a development of a doubly-covered square P. We call the
set T = p(0V') the cut tree which appears when P is developed into V (Fig. 4).

According to the results in [4] a cut tree has the following properties:

Lemma 2. A cut tree T has the following properties:

(1) T is a tree.
(2) T goes through every vertex of P.
(3) Leaves of T are the vertices of P.

From this lemma, we can get the following corollary easily.
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o

Fig. 4

Corollary 3. Let V be a development of a doubly-covered square P. Then,

(1) Int(V)) contains no lattice points in E.
(2) For each vertex x of P, there erists at least one lattice point v in V such
that p(v) = z.

The following lemma follows from Lemma 3.1(4) of paper [3].

Lemma 3. In order for a point = to be a point of degree d of the cut tree T it is
necessary and sufficient that the inverse image (plav )~ (z) of the point x under
the map play : OV — P consists exactly of d points.

As a special case of this lemma, we get the following corollary for leaves of a
cut tree (points of degree 1):

Corollary 4. Let a polygon V be a development of a doubly-covered square P
with T' as its cut tree. Let v be a lattice point lying in OV and let x = p(v). Then,
the following statements (1) - (8) are mutually equivalent:

(1) z is a leaf of the cut tree T .

(2) The angle around v within the development V is 180°.

(3) There exists no other point in 8V which belongs to the same equivalence
class as v.

Proof.

(1) = (2): Let = be a leaf of T'. Since the total angle around the vertex z within
P is 180°, it is clear that there is 180° angle around v within the development V.
(2) = (3): If the total angle around the lattice point v within V is 180°, then
it is impossible to have a development which puts together more angles around
v. If there exists another point v’ in 8V which is equivalent to v, then the angle
6 > 0 around the vertex v’ must be added to the angle around the vertex x of P
to make the total angle more than 180°, which yields a contradiction. Therefore,
there cannot be another point in 8V which is equivalent to v.

(3) = (1): If there exists no point in V which is equivalent to v, then the inverse
image (plov)~'(x) stated in Lemma 3(2) consists exactly of one point. Hence z
must be a point of the cup tree T' of degree 1, namely, it is a leaf of T. O
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3 Faces of Parallelograms

The statement “doubly-covered square P has the top face and the bottom face”
sounds plausible, but is it really true? To begin with, is it obvious that a doubly-
covered square P consists of two faces? What are these two faces? Let us deal
with these questions in this section.

Problem 1. Suppose we have a development S = S; U S, consisting of two unit
squares sharing a common side as in Fig. 5, and suppose all of the vertices of the
two squares S; and S correspond under the quotient map p to the vertices of
the doubly-covered square P, then we can decompose the doubly-covered square
P into two congruent squares p(S1) and p(S2). Is such a decomposition unique?

Fig.5 Fig. 6

In this problem, we assumed that all of the vertices of the two squares S; and
Sy correspond to the vertices of the doubly-covered square P under the map p.
The reason for making this assumption is the fact that only four vertices of the
doubly-covered square P have the property that the angle around each of those
within the doubly-covered square P is only 180°. Every other point of P has the
angle of 360° surrounding it in P.

The answer to Problem 1 above is “Yes, the decomposition is unique”. We will
call the decomposition P = p(S1) Up(S2) given uniquely by the two squares the
“congruent decomposition by squares”. What about the following Problem 2?
This is a question posed by replacing squares of Problem 1 by parallelograms.

Problem 2. Suppose we have as in Fig. 6, a development U = U; UU, consisting
of two congruent parallelograms sharing a common side, and suppose all the
vertices of the parallelograms U; and U are mapped by the quotient map p
onto the vertices of the doubly covered square P, then P can be decomposed
into two faces p(U;) and p(U;), which are congruent parallelograms. How many
such decompositions are there?

We call a decomposition P = p(U;) U p(Uz) into a pair of such congruent
parallelograms a congruent decomposition by parallelograms. In answer to Prob-
lem 2 there are countable infinity of such decompositions. Fig. 7 and 8 illustrate
examples of such decompositions. In these figures the diagram on the left gives
a development U with two parallelograms U; and U, distinguished by different
colors. The diagram on the right shows the result of constructing the doubly-
covered square P by folding the development colored by the two different colors
and then developing the result into a rectangle.
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Fig.7 Fig. 8

(o)

Fig. 9

How can we construct such congruent decompositions by parallelograms? Let
us explain the situation by using Fig. 9. Let us first consider a parallelogram
OABC of area 1 where vertices are lattice points. (We orient the parallelogram so
that OABC refers to the labeling of the vertices in counter clock-wise direction,
where O is the origin of the plane E). We will check later the fact that this
parallelogram gives a development of a doubly-covered square.

Since the area of the parallelogram is 1, we know by Pick’s Theorem that
there are no other lattice points beside the vertices in the interior or on the sides
of the parallelogram. Therefore, we can take an arbitrary pair of relatively prime
integers (a, b) and let OA = (a, b). If the side OA is parallel to the z- or y-axis,
then (a, b) = (%1, 0) or (0, 1), respectively.

For OC = (¢, d), it suffices to find a pair (c, d) of integers satisfying ad —
bc = 1 since the area of the parallelogram OABC is equal to 1. Since a and
b are relatively prime, we can find a pair Co, do satisfying ady — bcy = 1 by
using the extended Euclidean Algorithm. Using this pair (co, do), we let (c, d) =
(co + ak, do + bk) for an arbitrary integer k.

The procedure outlined above gives an explicit method for constructing a
parallelogram of area 1 with all of its vertices on lattice points. In short, we
can say that such a parallelogram can be determined for any choice of integers
a, b, ¢, d satisfying the identity ad — bc = 1.

Let us denote by SL(2, Z) the set of all 2x 2 matrices with integer coefficients
having determinant 1. We have the following lemma.

Lemma 4. Denote by S; the unit square with wvertices O(0, 0), A;(1, 0),
Bi(1, 1), C1(0, 1). The following statements (1) and (2) concerning a parallelo-
gram OABC' having the origin O as one of the vertices are mutually equivalent.
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(1) The parallelogram OABC has all its vertices on lattice points and has
area 1.

(2) The parallelogram OABC is an image of Sy under some linear transfor-
mation given by a matriz belonging to SL(2, Z).

Proof. Suppose that the parallelogram OABC has all of its vertices on lattice
points and has area 1, and let OA = (a, b) and OC = (c, d). Then, a, b, ¢, d
are all integers and ad — be = 1. Therefore, if we let M = zg), then the
image of the unit square S; under the linear transformation fys given by M is
the parallelogram OABC. The converse assertion is obvious.

Next, we consider the situation indicated in Fig. 10. The diagram on the left
indicates congruent unit squares S; and Ss, lying adjacently, while the diagram
on the right shows two congruent parallelograms U; and U, of area 1 lying
adjacently and sharing the side OC. By Lemma 4, it is clear that S; is mapped
onto U; by means of a linear transformation fjs given by a matrix M belonging
to SL(2, Z). It is also obvious that S, is mapped onto U; by the same linear
transformation fys.

Fig. 10 ]

In the next section we will show that the diagram on the right in Fig. 10
gives a development of the doubly-covered square P.

4 Actions of SL(2,2)

The group SL(2, Z) acts on the plane E = {(z, y)|z,y € R} as a group of
linear transformations: SL(2, Z) x E — E. The next lemma shows that this
action preserves the equivalence relation on E given in Definition 1.

Lemma 5. Let us denote by X1, X2 an arbitrary pair of points in E, and denote
by ~ the equivalence relation given in Definition 1. Then, for any M € SL(2, Z),
fM(Xl) ~ fM(X2) 8 satisﬁed ’Lle ~ X2.

Proof. Suppose X; ~ X,, then X; X, satisfy either the condition (1) or con-
dition (2) of Definition 1. We will show that fs(X;) ~ fm(X2) is satisfied in
either case.



