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FOREWORD

The physical properties of fluids are perhaps among ‘the most extensively investigated physical
constants of any single group of materials. This is particularly true of the thermodynamic prop-
erties of pure substances since the condition of thermodynamic equilibrium provides the simplest
considerations for experimental measurement as well as theoretical treatment. In the case of non-
equilibrium transport properties, the situation is significantly complicated by the necessity of
measurement of gradients in the experiment and the mathematical difficulties in handling non-
equilibrium distribution functions in theoretical treatments. Hence, our knowledge of the trans-
port properties of gases and liquids is perhaps one order of magnitude lower than for equilibrium
thermodynamic properties. This situation is very much apparent when examining the available nu-

merical data on the viscosity of fluids particularly at high pressures.

In this work, the authors have performed an outstanding contribution to the engineering
literature by their critical evaluation of the pressure dependence of the available data on the
viscosity of selected substances. The recommended values reported in the tables and figures also
incorporate the saturated liquid and gas states as well as the data of the dilute gas in an attempt
to integrate the present work with the recently published work by CINDAS/Purdue University on the
viscosity of fluids at low pressures [166]. A deliberate effort was made to treat as many of the

substances in the CINDAS volume as possible for which adequate high pressure data exist.

In these cases it was also attempted to establish internal consistency between the low pressure
and saturation states data reported by CINDAS and the high pressure treatment presented herein.
Unfortunately it was not possible to completely satisfy such internal consistency in all cases.
Thus, these two works may well be considered complementary volumes particularly that there has

been extensive cooperation between the two sets of authors.

While the primary goal of the present work is to present evaluated viscosity data at high
pressures, the section on review of the state of theory and estimation techniques represents a
significant contribution in its own right to the total volume. The skillfully prepared summary of
these highly complex topics should prove to be a great assistance to those interested in having
estimates of viscosity values for substances other than those reported herein. Similarly, the
comprehensive list of references cited in both the textual part of the work as well as those re-
porting original data sources should provide the reader with a solid base for more extensive and

in depth explorations.

The authors should be commended for their outstanding contribution in a most different and yet

important area of thermophysics of vital interest to a wide spectrum of engineering applications.

Y. S. Touloukian, Director

Center for Information and Numerical

Data Analysis and Synthesis (CINDAS); and
November 1978 Distinguished Atkins Professor of
West Lafayette, Indiana, USA Engineering, Purdue University



INTRODUCTION

This volume deals with the viscosity of gases and liquids at elevated pressures. Therefore,
excluded from the discussion is the dilute gas state by which it is implied that the viscosity is
independent of pressures. Defining the dilute gas state or alternatively the states of elevated
pressures, in macroscopic terms, is not a simple task. No clear pressure limit can be given, but
instead a bounding pressure-temperature curve, which is specific to each gas, must be specified
as discussed by Childs and Hanley [1]. Thus the common assumption that at one bar pressure vis-
cosity may be taken as that of a dilute gas, while correct in most cases, it is an incomplete
statement. For example, for argon at 600 K, pressures up to 30 bar represent states that may
still be considered in the dilute gas region, and for fluids with lower critical temperatures even
higher pressures are allowed. On the other hand, even at very low pressures, a lower limit of
dilution is reached, and the viscosity must be considered pressure dependent. This region, too,
is not considered in this work. Therefore, the macroscopic pressure limits of coverage depend on
the fluid and temperature considered. On the basis of molecular considerations the dilute gas
region may best be defined as the state where binary collisions between molecules adequately define
the transport properties of a gas. It is the region of the Boltzmann equation for the monatomic
gas from which exact relations between the transport properties and the intermolecular pair poten-
tial may be found [2,3]. A vast literature exists concerning the viscosity of dilute gases, a

comprehensive review of which may be found in [166] of the references to text.

The pressure dependence of a fluid is dramatic around its critical region, the derivative of
viscosity with respect to pressure being infinite at the critical point itself. It is less pro-
nounced far away from the critical point, yet by no means negligible. For most fluids reported
in this volume the pressure effect represents an increase of viscosity between 10% and 207 per
100 bar in the liquid region far away from the critical point. In the gaseous region, the pressure
dependence is a strong function of the temperature, and is influenced by the critical temperature.
For temperatures high compared to the critical, and pressures which are not extremely high, the
dilute gas state is approached and the pressure dependence fades away. This is the reason for the
observed low pressure dependence at room temperature of the viscosity of fluids like helium,
hydrogen, etc., which have low critical temperatures. On the basis of molecular considerations,
the transport properties in the states considered in this volume are governed by higher order
collisions and thus are beyond the scope of the original Boltzmann equation. The dynamics of
many-body-collisions are not yet satisfactorily understood. Thus, contrary to the case of a mon-
atomic dilute gas, no complete and rigorous theory has yet been developed for the dense fluid.
Methods for the theoretical study of viscosity in dense fluids range from simplified models like
Eyring's activated state theory and its successive modifications to the more formal but still
idealized approaches like Enskog's hard sphere theory, and finally include the rigorous statistical

mechanical theories in the form of the distribution function method or the time-correlation-function
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viii INTRODUCTION

method. Some excellent reviews have been published on the subject [4-10]. In addition to the
theoretical treatments, a large number of empirical estimation techniques for the viscosity of
fluids under pressure may be found in the literature [11]. They range from purely empirical ob-
servations on the dependence of viscosity on temperature and density to the well-known group con-
tribution methods that are recently studied successfully for equilibrium properties, and finally
include correlations between viscosity and other fluid properties. A condensed, albeit incomplete
summary of the more important developments in theory and estimation techniques is given in the

introductory treatment of this volume.

The authors greatfully acknowledge the partial financial support provided by the Deutsche

Forschungsgemenschaft (DFG) which made this work possible.
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presented herein. In particular, the authors wish to acknowledge the contributions of
J. Nagengast, Bochum and H. Dreyer, Berlin. Last, but not least, it is a pleasure to acknowledge
the encouragement and support provided by TEPIAC, operated by the Center for Information and
Numerical Data Analysis and Synthesis (CINDAS) of Purdue University, U.S.A. The former group
provided bibliographic assistance and performed the final editorial functions and prepared the

manuscript for publication.
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NOTATION

b b=%ﬁd3

hard sphere diameter

D self-diffusion coefficient (Eq. 27)
6 activation energy of a molecule
AEV latent heat of vaporization
f distribution function
Fla force exerted due to interaction of molecules 1 and 3 (with analogous meanings for
other molecule pairs)
g(d) equilibrium radial distribution function evaluated at distance d
g(R) equilibrium radial distribution function (Eq. 5)
Planck's constant
J microscopic stress tensor (Eq. 6, 7)
k Boltzmann constant
m molecular mass
M molecular weight
n number density
number of molecules (Eq. 18)
NL Loschmidt-number (Eq. 20)
P equilibrium pressure
Ej the momentum of molecule j
Pix momentum of molecule i in x-direction
i3 pressure tensor
q partition function of a molecule per unit volume in the initial state
q* same as q, except in activated state
r distance of separation between two interacting molecules, (Eq. 14)
r the position considered in the system
;j the position of molecule j
T, . r,., =1, -1
kj kj j k
gas constant
absolute temperature
u intermolecular potential (Eq. 14)
u the mass velocity
v molar volume
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NOTATION

free volume
compressibility factor

compressibility factor value for the hard sphere model

Greek letters

B

= T @ oY Ml

T

aQ © = ™

¢(rjk)

X
b, (R)

compressibility, (Eq. 37)

Kronecker delta

the delta-function

depth of potential-function well with the dimension of energy

symmetric traceless part of the velocity gradient Va, (Eq. 2)
friction coefficient related to intermolecular force field (Eq. 5)
temperature function, (Eq. 34)

viscosity

viscosity of the hard sphere molecule gas model in the low density limit
bulk viscosity (Eq. 2)

scaling factor for viscosity (Eq. 19, 20)

3.1416

density

molecular parameter in the potential-function model with the dimension of distance
time coordinate (Eq. 6, 7)

potential function between molecule pairs j and k separated at distance r

transmission coefficient (Eq. 23)

a function represented by a differential equation with specified boundary conditions
(Eq. 5)

Subscripts, superscripts and notations

~ Il

unit tensor

subscript R indicates a reduced (dimensionless) quantity. (See Eqs. 14-18)
subscript cr indicates values of the quantity at the critical point

critical point

gas

liquid

normal boiling point
normal melting point
saturated liquid

saturated vapor
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THEORY AND ESTIMATION

THEORY OF THE VISCOSITY OF DENSE GASES AND LIQUIDS

INTRODUCTION

Under the heading of theory, we wish to summarize briefly and without detailed reference to
the complicated mathematics involved, those theories of momentum transfer in dense fluids which
are based on molecular theory in a rigorous or at least modelized way. Various different approaches
widely differing in rigour, mathematical complexity, and practical utility are considered and the
presentation is grouped under the subheadings referred to as: rigorous statistical mechanical

theories, corresponding states theories and model theories.

RIGOROUS STATISTICAL MECHANICAL THEORIES

General Formal Theory

Two different approaches are available to derive formal expressions for the viscosity of
dense fluids by rigorous statistical mechanical theory, namely; the older distribution-function
method and the more recent time-correlation-function method. The basic idea which leads to a
connection of viscosity with molecular properties is the identification of the microscopic con-
servation equation for momentum with the analogous equation from continuum mechanics which contains
viscosity as an empirical transport coefficient. Averaging by means of the non-equilibrium dis-
tribution function all quantities in the microscopic conservation equation for momentum yields the
corresponding macroscopic conservation law. Its identification with the momentum conservation
equation from continuum mechanics gives the stress tensor in terms of averaged microscopic quan-

tities like the momentum, the locus and the force field of the individual molecules.

- N (p, Py o\ _ I T ) I
P =< z m[—l-G) [—l—qu(r.—r) - % LZr — I lsE, - (1)
j=1 " " 4 itk CEI 4

where P is the pressure tensor, m the molecular mass, Ej the momentum of molecule j, u the mass
velocity, §(x) the Delta-function, ;j the position of molecule j, r the position considered in the
system and ;kj = ;j - ;kf The term ¢(rjk) is the pair potential, Eq. (1) implying the approximation
of pairwise additivity.

The corresponding phenomenological form of the pressure tensor including the viscosity U as

an empirical coefficient, reads
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with
du Ju
1 i | 1 .= -
= i Al o == é 2
€ij z[ax - Sx.} 3V ¢ w8y, 2)

where |1, is the bulk viscosity, p the equilibrium pressure, 1 the unit tensor, € the symmetric

traceless part of the velocity gradientﬁ-a, and éij the Kronecker delta.

Proceeding further in line of the distribution function method, a kinetic equation has to be
established for the non-equilibrium distribution function which is contained in the averaged
microscopic quantities of the stress tensor [12]. Starting from the Liouville equation, which
the N-body non-equilibrium distribution function must satisfy, it is possible to set up a hier-
_archy of equations for the lower order non-equilibrium functions, the BBGKY-hierarchy (Bogoliubov-
Born-Green-Kirkwood-Yvon). If pairwise additivity of the intermolecular forces is assumed, such
that the total potential energy of the intermolecular forces may be replaced by the sum of the
potential energies of all molecular pairs, only the first and the second order distribution func-—
tions are important. The first two members of the hierarchy give coupling equations between the

first order, the second order and the third order distributions.

Bfl p, 9f, JF [szld_ e 3

Sc T m = ° 7|F12 |TT)dredpe

ot m Brl ap1)

3f,  p,(3f, P, (3f, _(of, _(9f, [ 3, L,V L L

3 T ;[BT} # TH_[T] + FIZ[T] * Fu{T] = P [‘_—] + Fyy [T) dr,dp, (4)
r arz apl op, op, op,

Here the index to the distribution function f indicates its order. FIS is the force exerted on

molecule 1 due to its interaction with molecule 3, fza has an analogous meaning.

In order to get a closed form kinetic equation for the second order non-equilibrium distri-
bution function, some truncation or decoupling has to be effected in the hierarchy. This can only
be done by introducing specific assumptions. For the dilute gas, the most important assumption is
that of completely random molecular distribution, which transforms the coupling equation between
the first order and the second order distribution function into a kinetic equation for the single

particle distribution function, the Boltzmann equation (3).

For dense gases and liquids, Kirkwood's Brownian Motion Theory leads to Fokker-Planck-type
equations for the time-smoothed first order and second order non-equilibrium distribution functions
{13-15,17,18]. The equation for viscosity is [16,19]

nmkT me 2

2c T 15kT °

® (4 s, oar )

oy

Here ¢ is a friction coefficient related to the intermolecular force field, for which various
theoretical expressions exist, all of which are not fully satisfactory. This quantity may also

be obtained from experimental data for the selfdiffusion coefficient. The quantity ¢ is the pair
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potential, g(R) the equilibrium radial distribution function, ¥, (R) a function for which a
differential equation along with boundary conditions has been specified. Comparison with exper-
imental results reveals discrepancies in the order from one to several hundred percent depending
on the values used for g(R) and ¢ [16,19]. This, in addition to the complicated numerical evalu-

ation, makes this approach unattractive for practical application.

Rice and Allnatt [20,21] have modified the Kirkwood theory. They have idealized the repulsive
part of the intermolecular potential as a hard core. The change of the distribution function due
to hardcore collisions is treated by means of an Enskog-type collision term, whereas the rate of
change due to motion in the attractive fields of surrounding molecules between hard core collisions
is treated by Kirkwood's approach. This theory, too, contains the friction coefficient ¢ which
must be obtained by some method. The resulting expressions are too complicated to be cited here.
Many workers have discussed this approach [22-26]. Various other approaches to a theory of trans-
port in dense media on the basis of distribution functions have been made [27-36]. Comparison of
calculated viscosities to experimental data have been carried out. None of these approaches

appears to be in good agreement with experiment for a large region of states.

Instead of non-equilibrium distribution functions, the viscosity can be related to the way
in which spontaneous fluctuations regress in an equilibrium system. This idea leads to the time-
correlation-function expression for viscosity, in which the viscosity is connected with the time-
correlation-function of a dynamical phase function proportional to the microscopic stress tensor.

The resulting expression for the viscosity of pure fluids [8] is

_ 1 Xy xy
= o J<J (0)J (T)>dT (6)
(o]
with
N (p. p N
ny—z[“l-%zﬁi’.—%} (7)
=1t j#1 M drij)

where piX is the momentum of molecule i in x-direction. The angular brackets in Eq. (6) indicate

averaging over an equilibrium ensemble.

The time-correlation function, which is the integrand in Eq. (6), measures the extent to
which the value of a dynamical variable at a given time is affected by its value at some earlier
time, and is therefore obviously a function of time. Various methods have been used to relate
transport coefficients, especially the viscosity, to time-correlation functions [37-40]. Again
the microscopic analog of the usual macroscopic momentum flux is used to identify the time-corre-
lation function formula for viscosity. The resulting expression, Eq. (6), is valid irrespective
of density. Special discussions have been given for the region close to the critical point [41,
42]. Of course, the time correlation expression for viscosity is purely formal. Solutions of
the N-body problem are required before a rigorous evaluation can be completed. For dilute gases,
where the main dynamical events are taken to be isolated binary encounters, the time-correlation-
function expressions for the transport properties have been evaluated [37,43]. The results coin-

cide with the results of the Chapman-Enskog solution of the Boltzmann equation. Calculations with
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the assumption of a hard sphere potential and a decaying exponential for the autocorrelation of

the stress tensor lead to close agreement with Enskog's theory [44]. A general discussion on the
connection between the kinetic approach and the time-correlation approach is given in [45]. A
computer simulation solution of the time-correlation-function expression for viscosity by molecular
dynamics has been given in [46]. Using the Lennard-Jones-potential, a comparison of the thus cal-
culated values with experimental data for the viscosity of liquid argon reveal deviations in the
order of 10%, which is by far better than the results of any other statistical calculation for
viscosity in the liquid region without fitting of data. As molecular dynamics calculations are

not practical as a tool to compute viscosity, theoretical solutions of the time-correlation-

functions are needed. Such solutions for viscosity are discussed in [47-51].

A formal approach to the solution of the rigorous statistical mechanical formulae for the
transport coefficients is the density expansion method. In equilibrium statistical mechanics,
such a procedure yields the virial series. Similar efforts for the transport coefficients may
either start from the BBGKY-hierarchy or from the time-correlation functions, whereby equivalent
results are obtained. Due to successive correlated collisions, the density expansion is divergent,
re-summation introducing logarithmic terms. The first density correction to the Chapman-Enskog
dilute gas results requires the detailed analysis of triple collision events and is very involved
[52-57].

The Enskog-Theory

Long before the general formal theory discussed above was developed, D. Enskog proposed a
method for extending the Boltzmann equation to higher densities for the special case of a fluid
consisting of hard spheres [9]. The assumption of hard spheres means that the forces between the
molecules on collision are impulsive, i.e., the collision time goes to zero. Therefore, ternary
and higher order collisions are neglected. Taking only static correlations into account and ne-
glecting all successive binary collision events, by the assumption of molecular chaos for the
momenta, leads to a modified Boltzmann equation for a dense fluid of hard spheres. It can be

solved analogous to the case of a dilute gas, yielding the following expression for viscosity

u 1 2_2
—_— = 4+ 0.800 bn + 0.761 b d 8
THNICY n n"g(d) (8)

Here g is the viscosity of the hard sphere gas in the low density limit, g(d) is the equilibrium
radial distribution function evaluated at a distance d, the hard sphere diameter b = (2/3)7d®, and
n is the number density. Equation (8) has been tested by comparison with molecular dynamics cal-
culations [58,59]. As the hard sphere potential model has been used in these computations, the
results serve to test primarily the molecular chaos assumption for momenta. It can be concluded
that for viscosity the error of the Enskog formula for hard spheres lies within 20%. Good agree-
ment is also found between the first density correction of the dilute gas viscosity taken from

the Enskog equation and more accurate calculations for this quantity including triple collisions
[60].

The Enskog formula for viscosity has also been used to predict the viscosity of dense real

fluids. Various methods have been considered. From a theoretical viewpoint the most satisfactory
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approach is the one using high density-high temperature p-v-T data to obtain a temperature
dependent value for the hard sphere diameter d [61]. Simple perturbation theory for the thermo-
dynamic equation of state yields the compressibility factor Z as an expansion in terms of the

H
reciprocal temperature around the hard sphere value Z

a, (v)
=7t 4 o[i] (9
T Tz

Experimental data for Z, plotted as isochores against 1/T, in fact give straight lines in the
limit of high temperatures. Extrapolation to (1/T) - O an "experimental" value for v is obtained,
which is in good agreement with the theoretical equation of state for hard spheres, e.g., the
Carnahan-Starling equation [62]. From interpretation of the slight curvature of the isochores at
lower temperatures as the effect of a temperature dependent hard sphere diameter, a method may be
developed to determine such values for d(T) from p-v-T data. In addition to that, g(d) is calcu-
lated by the well-known hard sphere radial distribution function and uo from the well-known dilute
gas viscosities of hard spheres. Computed viscosities for the heavy noble gases agree well with
experimental data at high temperatures and high densities. For densities below the critical, the
discrepancies become large. This is an expected result, as the hard sphere model appears to be
realistic only for high densities and high temperatures. For more complicated fluids, this ap-
proach gives less satisfactory results. Typical errors are between 107% at high densities and 40%
at zero density [63]. Another method to determine the hard sphere diameter is fitting viscosity
data at high densities and different temperatures to the theoretical Enskog curve. For monatomic
substances, such d values agree with those from p-v-T data [64]. For simple polyatomic fluids,
the viscosity is also predicted quite satisfactorily over a wide range of states by this method
[63]. Another way to apply Enskog's theory to real fluids uses p-v-T data to determine an empiri-

cal expression for the equilibrium radial distribution function
-1 Lj%p} _
gd) = bn nk[BT)v %] (10)

When d is chosen to fit the experimental dilute gas viscosity, reasonable agreement is obtained
with experimental data for simple gases, for densities up to and somewhat above the critical, pro-

vided that the temperature is sufficiently above the critical temperature [63,65].

The Enskog approach has been extended to a fluid of molecules interacting with a square-well
potential [66-69]. This potential model takes attractive forces into consideration and at the
same time retains the desirable feature of repulsive forces, now at two distinct separations.

Again molecular chaos for the momenta is assumed. The resulting expression for viscosity is

1/2 3 2
L= 5 [m_k'l‘) {1+ (2bn/5)[g(c) +R%g(Ro)A]} + ;Sgﬂ(bn)zlg(O)+R“g(RO)B] (11)
1602 g(0) +R%g(Ro) [B+ (1/6) (e/kT)?]
with
2
A=1- e—E/kT + E%E'l + %3 eg/kT [ e(_x ) x%dx (12)
™
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