Using XML with ~
Legacy Business
Applications ‘

Michael C. Rawlins

Using XML
with Legacy
Business
Applications

Michael C. Rawlins

vvAddison-Wesley

Boston ¢ San Francisco * New York ¢ Toronto * Montreal
London ¢ Munich ¢ Paris * Madrid
Capetown ¢ Sydney e Tokyo ¢ Singapore ¢ Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals,

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

Unless otherwise noted, the opinions presented in this book are those of the author. They should not be
construed as the positions of any organization with which he may be affiliated.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and special sales.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:
International Sales

(317) 581-3793
international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com
Library of Congress Cataloging-in-Publication Data

Rawlins, Michael C.
Using XML with legacy business applications / Michael C. Rawlins.
p. cm.
ISBN 0-321-15494-0 (Paperback : alk. paper)
1. XML (Document markup language) 2. Business—Computer programs. L.
Title.

QA76.76.H94R375 2003
005.7'2—dc21
2003010094

Copyright © 2004 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior consent of the publisher. Printed in the United States of America. Published simultaneously in Canada.

]

For information on obtaining permission for use of material from this work, please submit a written
request to:

Pearson Education, Inc.

Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116

Fax: (617) 848-7047

ISBN 0-321-15494-0

Text printed on recycled paper
123456789 10—CRS—0706050403
First printing, August 2003

Preface

Someday most business applications will be able to read and write XML files. Until
that happens, you are probably going to need techniques and utilities like those
presented in this book. This bock is for people who use business applications that
don’t currently support XML and for people who develop those applications and
want to build XML support intc them. It is designed to provide a tool kit of tech-
niques and utilities that can help you perform common enterprise application inte-
gration (EAI), business-to-business (B2B), or electronic data interchange (EDI)
data conversion operations using XML.

Nothing in this book is rocket science. Any good programmer with experi-
ence in the relevant technologies could develop any of these techniques and util-
ities. The point of this book is that I've done it so that you don't have to. As is
often said, good programmers clevelop good programs. Better programmers steal
what they can and modity it. Steal this code.

If you are a user of a business application and already have or can afford to
procure a capable EAI or EDI software package, you probably don’t need this
book. However, if you have only some simple needs that don't justify the pur-
chase of such a package, or if for some other reason you don’t want to or can’t
afford to spend thousands of dollars to purchase one, then this book is for you.
And if you are interested in an open, nonproprietary, standards-based, and
portable approach to data conversion, then this book is for you, too.

Xvii

xviii | Preface

Acknowledgments

Many people helped in the production of this book. First, I want to thank my
editors, Mary O'Brien and Shelley Kronzek. Without Shelley’s enthusiasm and
encouragement, [don't think this project ever would have gotten off the ground.
Without Mary’s help and persistence, 1 might not have finished yet. To Chrysta
Meadowbrooke, thank you very much for your excellent copyediting. I also want
to thank the rest of the staff at Addison-Wesley, particularly Brenda Mulligan for
her help in many small ways.

My thanks to my technical reviewers—Eve Maler, Daniel K. Appelquist,
Steve Vinoski, and Cameron Laird. Your candid comments helped make this a
much better book. Innumerable thanks also to the Computer Science faculty at
the University of Texas at Dallas, in particular to Dr. Lawrence Chung. Yes, you
can teach an old dog new tricks. And thanks to many professional colleagues too
numerous to mention by name, but especially those from the XML Forum of the
Postsecondary Electronic Standards Council, ANSI ASC X12, the OASIS UBL
Technical Committee, and the ebXML Working Group.

Finally, [want to thank my good wife, Diana, for her patience, support, and
tolerance for my skewed priorities as I finished up this project.

Contents

Preface

Chapter 1

Introduction

The Problem
What Do We Need in a Solution?

Functional Requirements
Nonfunctional Requirements: Good, Fast, and Cheap
The Overview of a Solution
Architecture
Why Not Use XSLT for Everything?
Two Implementations of the Architecture: Java and C++
The Document Object Model
Why Use the DOM?
How to Use This Book
Chapter Organization
Notes for Primary Audiences
Chapter Summaries
Conventions
What You Need to Use This Book
What You Should Already Know
‘Web Site and Contact Information
General Software
Java Software
C++ Software

vii

viii Contents
For Developers 26
General Coding Approach and Conventions 26
Additional C++ Considerations 28

How You Can Use the Utilities and Code 29
References 31
Resources 32
Chapter 2 Converting XML to CSV 33
Requirements 33
Running the Utility 34
Sample Input and Output 36
Design 38
Naming Elements 38
Module Logic 40

Java Implementation 45
main in XMLToCSVBasic.java 46

write in CSVRowWriter.java 47

Error Handling 49

C++ Implementation 52
main in XMLToCSVBasic.cpp 53

write in CSVRowWriter.cpp 55

Error Handling 57
Comparing the Java and C++ Implementations 59
Enhancements and Alternatives 60
Validation of the Input Document 61
Using a ColumnNumber Attribute 61

A Recursive Algorithm 61
Advanced Functionality 63
Resources 64
Chapter 3 Converting CSV to XML 65
Requirements 65
Running the Utility 66
Sample Input and Output 67
Design 70
Main Routine 70
CSVRowReader Class 72

Java Implementation 75
main in CSVToXMI Basic.java 75

parse in CSVRowReader.java 78

write in CSVRowReader.java 78

C++ Implementation 78
main in CSVToXMLBasic.cpp 79

Contents ix

parse in CSVRowReader.cpp 81

write in CSVRowReader.cpp 81
Comparing the Java and C++ Implementations 81
Enhancements and Alternatives 82
Validation of the Output Document 82
Advanced Functionality 82
Some Observations 82
Resources 85
Chapter 4 Learning to Read XML Schemas 87
Rope, Anyone? 87
A Few Different Document Approaches 89
DTD Refresher 91
Foundation Concepts and Terminology 93
Elements and Types 93
Simple and Complex 94
General Features 95
Schema Declaration in Instance Documents 98
Comments and Documentation 98
Element Declarations 99
Simple Content Elements 99
Schema Built-in Data Types 100
Extending and Restricting Simple Types 102
Setting a Maximum Length 102
Setting Minimum and Maximum Values 103
Patterns for Identifiers 103

Code Lists 104
Attribute Declarations 105
Complex Content Elements 107
Types of Content 108
Mandatory, Optional, Limits 109
Creating New Complex Types by Extension 110
Attribute Declarations 111
Understanding Namespaces 112
What Is a Namespace? 112
URIs, URNSs, and URLs 113
Namespace Qualification in Instance Documents 114

The W3C XML Schema-Related Namespaces 116
Structuring Schemas 117
Global Types and Local Elements versus Global Elements 117
Named Types and Anonymous Types 118
Modularity: The xs:include and xs:import Elements 118

An Example of Importing Type Libraries 119

Less Commonly Used W3C XML Schema Language Features 127

Contents

Chapter 5

Chapter 6

Is There Data or Not?
Reference
Resources

Validating against Schemas

Requirements
Running the Utilities
Design
Java Implementation
[nput Validation in XMLToCSVBasic.java
Output Validation in CSVToXMLBasic.java
C++ Implementation
Input Validation in XMLToCSVBasic.cpp
Output Validation in CSVToXMI Basic.cpp
Examples of Input Validation Failures
Resources

Refining the Design

Why Refine the Design?
Making XML the Common Format
Analyzing the Legacy Non-XML Grammars
Describing the Legacy Non-XML Grammars
Representing the Legacy Non-XML Grammars in XML
Instance Document Design
File Description Document Design
Schemas for File Description Documents
Schemas for Source and Target Documents
Additional DOM Processing Considerations and Strategies
Multilingual Issues
Error Handling Strategy
High-Level Design
Source Converter Processing
Target Converter Processing
Summary of Classes
Detail Design
Main Routine Structures
Converter Base Class
SourceConverter Base Class (Extends Converter)
TargetConverter Base Class (Extends Converter)
RecordHandler Base Class
RecordReader Base Class (Extends RecordHandler)
RecordWriter Base Class (Extends RecordHandler)
DataCell Base Class

131
133
133

135

135
136
137
139
140
142
144
144
145
147
152

153

153
154
155
159
162
162
163
165
168
170
174
175
176
176
176
178
182
182
184
185
188
190
195
200
203

Contents xi
Java Implementation 205
C++ Implementation 207
References 208
Resources 208

Chapter 7 Converting CSV Files to and from XML, Revisited 209
CSV to XML: Functionality and Operation 210

Requirements 210
Running the Utility 211
Sample Input and Output: Invoice 213
XML to CSV: Functionality and Operation 218
Requirements 218
Running the Utility 219
Sample Input and Output: Purchase Order 220
Describing the File Formats 225
CSV Physical Characteristics 225
XML Qutput Characteristics 225
CSV File Grammar 226
Example File Description Documents 230
Schema Examples 233
High-Level Design Considerations 237
Grammar Analysis and Description 238
File Description Document Schemas 240
CSV to XML.: Detail Design 249
Main Program 249
CSVSourceConverter Class (Extends SourceConverter) 250
CSVRecordReader Class (Extends RecordReader) 255
XML to CSV: Detail Design 261
Main Program 261
CSVTargetConverter Class (Extends TargetConverter) 262
CSVRecordWriter Class (Extends RecordWriter) 264
New DataCell Methods and Derived Classes 266
New DataCell Methods 266
DataCellAN Class 268
DataCellReal Class 268
DataCellDateMMsDDsYYYY Class 269
Java Implementation 271
C++ Implementation 273
Enhancements and Alternatives 275
Additional Data Types 275
Variety of Record Types 275
Efficiency and Performance 276
Resources 277

xii

Contents

Chapter 8 Converting Flat Files to and from XML

Flat File to XML: Functionality and Operation
Requirements
Running the Utility
Sample Input and Output: Invoice
XML to Flat File: Functionality and Operation
Requirements
Running the Utility
Sample Input and Output: Purchase Order
Describing the File Formats
Flat File Physical Characteristics
XML Output Characteristics
Flat File Grammar
Example File Description Documents
Schema Examples
High-Level Design Considerations
Grammar Analysis and Description
File Description Document Schemas
Flat File to XML: Detail Design
Main Program
FlatSourceConverter Class (Extends SourceConverter)
FlatRecordReader Class (Extends RecordReader)
XML to Flat File: Detail Design
Main Program
FlatTargetConverter Class (Extends TargetConverter)
FlatRecordWriter Class (Extends RecordWriter)
New DataCell Methods and Derived Classes
New DataCell Methods
New Methods in DataCell Derived Classes
DataCellN Class
DataCellDateYYYYMMDD Class
Java Implementation
C++ Implementation
Enhancements and Alternatives
Additional Data Types
CSV Record Formats
Rounding versus Truncation
Group Fields
Redefined Fields
Resources

279

279
279
280
282
291
291
291
293
298
300
300
300
313
317
321
321
323
325
325
326
333
337
337
338
342
345
345
347
350
352
354
354
355
355
355
356
356
356
357

Contents

xiii

Chapter 9 Converting EDI to and from XML 359
Overview of the X12 EDI Syntax and Standards 360
X12 to XML: Functionality and Operation 363
Requirements 363
Running the Utility 364
Sample Input and Qutput: 850 Purchase Order 367
XML to X12: Functionality and Operation 374
Requirements 374
Running the Utility 374
Sample Input and Output: 810 Invoice 376
Describing the File Formats 384
X12 File Physical Characteristics 385

XML Output Characteristics 385
Transaction Set Grammar 388
Example File Description Documents 389
Schema Examples 397
Supplemental Data Store for Control Numbers 398
High-Level Design Considerations 400
Grammar Analysis and Description 400

File Description Document Schemas 403

X12 to XML.: Detail Design 404
Main Program 404
X12SourceConverter Class (Extends SourceConverter) 405
EDIRecordReader Class (Extends RecordReader) 412
X12RecordReader Class (Extends EDIRecordReader) 425
XML to X12: Detail Design 428
Main Program 428
X12TargetConverter Class (Extends TargetConverter) 429
EDIRecordWriter Class (Extends RecordWriter) 433
X12RecordWriter Class (Extends EDIRecordWriter) 438

New DataCell Methods and Derived Classes 444
DataCellX12N Class (Extends DataCellN) 444
DataCellX12R Class (Extends DataCellReal) 445
DataCellX12DT Class (Extends DataCellDateYYYYMMDD) 447
DataCellX12TM Class 448

Java Implementation 450
C++ Implementation 452
Enhancements and Alternatives 453
Reference 454
Resources 454

Xiv

Contents

Chapter 10 Converting from One XML Format to Another with XSLT 457

Chapter 11

Why XSLT Is Important 457
XSLT Overview 459
A Simple Example: Hello World 460
Another Simple Example: Changing Tag Names 462
A General Approach to Using XSLT 465
XPath Basics 467
Structuring Stylesheets 471
A Bit of Housekeeping 478
The xsl:output Element 478
Running Transformations from a Command Line 478
Manipulating Content 479
Adding and Removing Content 479
Splitting Data Content 480
Combining Data Content 481
Changing an Attribute to an Element 484
Changing an Element to an Attribute 485
Solving Typical Navigation Problems 486
Mapping a Flat Structure to a Hierarchy 486
Mapping a Hierarchy to a Flat Structure 492
Tips for Dealing with Other Navigation Problems 494
Advanced Techniques for Processing Content 495
Omitting Empty Elements and Attributes 495
Converting Coded Values 497
Handling Calculations 502
Handling Namespaces 505
Calling Non-XSLT Procedures 508
References 511
Resources 511
Using the Conversion Techniques Together 513
Pipe and Filter Revisited 513
Sample Conversion Scenarios and Scripts 515
Purchase Order: UBL to XML to CSV 515
Invoice: Flat File to XML to EDI 517
Campaign Contribution Reporting: CSV to XML to Flat File 519
Building a System: Babel Blaster 520
Version 1.0 Requirements 523
Architectural Overview 524
Trading Partner/Application information 525
Linking Pipes and Filters 525
Version 1.1 Requirements 526

Resources 527

Contents

XV

Chapter 12

Chapter 13

Appendix A
Appendix B
Appendix C
Bibliography
Credits

index

Building XML Support into a Business Application

What Should Be “XMLized"?
Devising an Architecture
Selecting the XML Format
Changing Your Code

What about Databases?
Other Approaches and APIs
Non-XML Issues

Resources

Security, Transport, Packaging, and Other Issues

Some General Observations about Security

Dealing with Security
Security Requirements and Exposure
Countermeasures and Remediation Strategies
Prevention Countermeasures

Transport

Packaging

Common Combinations for Security, Transport, and Packaging
Emerging Technologies

What This Means for You

Reference

GNU General Public License
Pseudocode Conventions

COM Essentials for the Non-COM Programmer

529

529
531
534
537
542
542
546
548

551

551

552
553
554
555
557
558
558
560
561
562

563

571

575

581

585

587

Introduction

You know what a “legacy application” is? Its one that works.—Bill Cafiero

This chapter introduces the approach presented in the book and discusses the business
and technical rationales for it. Based on these, the overall features of the approach and
the major design decisions are reviewed. The chapter concludes with a description of
the primary audiences and suggestions for how to use the book.

@ The Problem

So, what’s the problem? You probably picked up this book (or are browsing this
sample chapter on the Web) because the title sounded like it might have some-
thing to do with your situation. The Preface probably fleshed out that impres-
sion a bit more. By now you probably think you have the book pretty well
scoped out, and you may not be that far from the truth. But to save you a bit of
time, let me be very specific about the problem (or, more accurately, the prob-
lems) that this book addresses.

The primary problem is this: You have one business application that imports
and exports data in XML formats, and one that doesn’t. You need to make these
two applications talk to each other. The XML-enabled application may be yours,
or it may belong to someone with whom you (or your application’s users) need to
exchange data. (Imagine an important customer or government agency sending

1

Chapter 1 = Introduction

you a letter that says, “You will receive orders from us in XML format by January
15 or be assessed a $50 penalty for each paper order.”) The legacy application is
most probably yours. However, the shoe may be on the other foot: Your applica-
tion speaks XML, but the other guy’s application doesn’t. He expects you to deal
with it. (Imagine an important customer sending you a letter that says, “You will
receive orders from us by EDI by January 15 or be assessed a $50 penalty for each
paper order.”)

There are really two perspectives to this primary problem, and this book ad-
dresses both. According to one perspective, the application developer should just
fix the stupid application so it can speak XML. From an end user’s viewpoint, this
is perfectly reasonable, and I'll deal with the problem from this perspective.

From the other perspective, whoever developed the application can't or
won't support XML by the time you need it (which might have been last week).
There may be several reasons for this. The vendor of a commercial package may
not see sufficient market demand. The vendor may have retired the product or,
even worse, gone out of business. If the application was developed in-house, the
original developers may be gone, retired, or dead. So, there are quite a few rea-
sons why you might need to come up with a solution on your own. In this book
I'll also deal with the problem from this perspective.

That, in about 400 words, sums up the primary problem this book addresses.
However, in solving this problem from the perspective of someone who needs to
come up with a solution on their own (as opposed to that of the developer who
just needs to fix the stupid application), we find that the solution might apply to
similar problems. Why is that? Well, if we have a method to go from a legacy flat
file to XML and a method to go from XML to a legacy flat file, we have a method
to go from a legacy flat file to a different legacy flat file (with XML in between).
The same thing holds for other common formats such as comma-separated values
(CSV) or Electronic Data Interchange (EDI). By coming up with a solution to the
primary problem, we find that we have a general solution for all sorts of file for-
mat conversion problems. That is also what this book is about.

Before we leave the problem definition and start addressing the solution,
there are just a couple more points we need to clarify. First, what, exactly, is a
legacy application? Aside from Mr. Cafiero’s pithy observation, for the purposes
of this book we’ll refer to a legacy application as any working application that
doesn'’t currently provide native support for XML (that is, the application can’t
produce XML documents as output and consume XML documents as input).

Second, why use XML with a legacy application? That is a reasonable ques-
tion, but answering it is beyond the scope of this book. In this book I assume
that you have already answered that question for yourself. You're going to use
XML and you have figured out why; all you want to know is how. There has been
enough good general material written on the benefits of application integration
and electronic commerce that I feel there’s very little I can add for justification.

What Do We Need in a Solution? 3

In regard to XML in particular, 1 assume that you have one application that uses
XML and a legacy application that doesn’t, and that you need to integrate them.
To do that you need either to convert between XML and the format required by
the legacy application or to build native XML support into the legacy application.
You know what you need to do and why you need to do it. This book is intended
to help you with how to do it.

B What Do We Need in a Solution?

When we ask, “What do we need?” we're talking about requirements. There are
two types of requirements: functional and nonfunctional (the latter are also known
as quality requirements or system constraints). The former have to do with what
the system is supposed to do. The latter have to do with how it does what it does.
Both are important, and both determine the overall approach of this book.

Beyond the overall dictate of solving the problem, two distinct sets of require-
ments are imposed on the solution by technical end users on the one hand and by
application developers on the other. I'll talk a little later about why 'm dealing
with both, but for now if you don’t care about the other group you can just skip
the relevant paragraphs.

Functional Requirements

The technical end user who has an application that doesn’t speak XML more
than likely needs the solution to do one or more of the following:

Convert an XML-formatted file to a flat file

Convert a flat file to an XML-formatted file

Convert an XML-formatted file to a CSV file

Convert a CSV file to an XML-formatted file

Convert an EDI-formatted file to an XML-formatted file

B OB B & ® =

Convert an XML-formatted file to an EDI-formatted file

A user may want the solution to support other formats, but CSV, flat file, and
EDI should handle most cases. For example, an end user may also need to get
data out of a database (relational, hierarchical, or otherwise) and put it into an
XML format, or go back the other way. Sorry, but these types of problems are a
bit beyond our scope. 1 will, however, give in Chapter 12 an overview of some
approaches for doing things like this. When 1 present the approaches, you'll
understand why problems like this exceed our scope a bit.

