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Foreword

The Harbrace College Mathematics Series has been undertaken in response
to the growing demands for flexibility in college mathematics curricula.
This series of concise, single-topic textbooks is designed to serve two
primary purposes: First, to provide basic undergraduate text materials
in compact, coordinated units. Second, to make available a variety of
supplementary textbooks covering single topics.

To carry out these aims, the series editors and the publisher have
selected as the foundation of the series a sequence of six textbooks covering
functions, calculus, linear algebra, multivariate calculus, theory of fun-
tions, and theory of functions of several variables. Complementing this
sequence are a number of other planned volumes on such topics as proba-
bility, statistics, differential equations, topology, differential geometry,
and complex functions.

By permitting more flexibility in the construction of courses and course
sequences, this series should encourage diversity and individuality in cur-
ricular patterns. Furthermore, if an instructor wishes to devise his own
topical sequence for a course, the Harbrace College Mathematics Series
provides him with a set of books built around a flexible pattern from which
he may choose the elements of his new arrangement. Or, if an instructor
wishes to supplement a full-sized textbook, this series provides him with
a group of compact treatments of individual topies.

An additional and novel feature of the Harbrace College Mathematics
Series is its continuing adaptability. As new topics gain emphasis in the
curricula or as promising new treatments appear, books will be added to
the series or existing volumes will be revised. In this way, we will meet
the changing demands of the instruction of mathematics with both speed
and flexibility.

SALOMON BOCHNER

W. G. LISTER



Preface

This book is an exposition of selected topics from the calculus of functions
of several variables. It is intended for undergraduate mathematics stu-
dents in the third or fourth year analysis program, who have had several
semesters of the calculus and at least an introduction to linear algebra.

Specifically, the prerequisites include knowledge of the real numbers
and functions of one variable plus some introductory experience with
multivariate calculus of the type that is usually included in the first two
years of college mathematics. The linear algebra needed, which is approxi-
mately the content of Linear Algebra by Ross A. Beaumont, includes the
concept of a finite dimensional vector space, some experience with the
idea of a basis for a vector space, and some elementary concepts and
properties associated with linear transformations, such as those of rank
and determinants. Aside from the fact that the fundamental existence and
uniqueness theorem for ordinary differential equations is used without
proof, the results used are proved in the body of the text.

The topics treated in this book were selected with two primary objec-
tives: (1) these topics cover the notions usually referred to as ‘‘vector
analysis,”” and (2) they cover concepts that can be easily generalized to
differentiable manifolds in a relatively coordinate-free manner.

The book divides naturally into three sections. The first two chapters
are rather standard, treating respectively the point set topology of R»
and differentiation on R* In the second chapter the inverse function
theorem and the theorem on change of variables in multiple integrals are
proved and several important implications are discussed in detail. The
latter include the concept of local coordinates and the rank of a differentia-
ble map from R™ to R». Basically preparatory, these two chapters con-
stitute the theoretical foundations of the material developed in the re-
mainder of the book.

Chapters Three, Four, and Five constitute the next unit. They are
basically manipulative. In Chapter Three the notion of a (tangent)

vii



viii / PREFACE

vector at p € R” and the dual notion of covectors at p are developed. With
this introduction, Chapter Four is devoted to exposition of the multilinear
algebra necessary to construct and verify the properties of exterior
multiplication. This chapter actually includes a little more than is needed,
however, since the exterior product is constructed by antisymmetrization
of multilinear forms rather than by the somewhat more elementary
method of giving a multiplication table with respect to a specific basis and
showing that the resulting properties of the product imply uniqueness.
Chapter Five treats differential forms on R", k-chains, Stokes theorem,
and some related integral expressions involving the metrie, such as
Green’s identities and Poisson’s integral formula for harmonic functions.

Chapter Six treats the concept of a flow with velocity field X and the
related derivations on vector fields and differential forms. It includes
Frobenius’ theorem on completely integrable systems of first-order partial
differential equations and Poincaré’s lemma that a closed differential form
is locally exact.

Chapter Seven shows how the notation and ideas developed earlier
can be used in the theory of functions of a complex variable. After a dis-
cussion of terminology and of the concept of an analytic coordinate system
in the first two sections, the remainder of the chapter is devoted to develop-
ing some of the standard material centering around Cauchy’s integral
formula and power series expansions. The nature of these last two chapters
is again somewhat more theoretical than manipulative.

JOHN W. WOLL, JR.

Seattle, Washington
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CHAPTER ONE

Topology of R"

1 Fundamental structure of R”

n-dimensional euclidean space R” is the set of all n-tuples p = (at, . . .,
a™) of real numbers, a* represents the kth member of the n-tuple (not a
to the kth power), and the letters p and ¢ are used to represent elements

of R». R» is a vector space, two points p = (¢, . . ., a”) and ¢ =
@' ..., b") having the sum p + ¢ = (' 4+ 0%, . . ., a*+b"). If A
is a real number, Ap = (Aa!, . . ., Aa"®). The length of an element
p = (at, . .. ,a") of R*is given by

ol = (S @
and it satisfies the important relations
e + all < llpll + llall;
IApll = I\ pll.

The euclidean distance d(p, ¢) between p and q is the length |[p — ¢||.

2 Open sets, closed sets, and neighborhoods

The e-ball centered at q or, equivalently, the ball of radius € centered at q
is the subset B.(¢q) of R" consisting of those points p for which d(p, ¢) < &.

B.(¢) = {p € R*:d(p, q) < &}.

q is an interior point of the set A if A contains some ball of positive radius
centered at ¢ as a subset. The set of interior points of A is denoted by

1



2 / cHAPTER ONE Topology of R

interior (A). The set U is open if U = interior (U), while U is a netghbor-
hood of q if q € interior (U). So a set is open if and only if it is a neighbor-
hood of each of the points it contains. The empty set & does not contain
any points and accordingly is equal to its own interior and open. Every
point of R" is an interior point of R*, so that R" is also open.

A set F is closed if its complement F°, the set of points in R® which are
not members of F, is open. For example, the complement of the empty
set & is @° = R» which is open, so that & is closed. (& is both open and
closed as is R™.)

A few of the more important properties of open and closed sets are
established below as examples; many other properties are left as exercises.
In general, of course, most sets are neither open nor closed.

(2.1) Example. If U, ..., U, are open sets, their intersection U; N
U:s N -+ - NUnxis open. In fact, if p belongs to Uy N + - - N Un, then for
each 7z =1, . . ., m there is a number & > 0 such that p € B,,(p) C Ui. The
intersection of these concentric balls B (p) is the ball Bs(p) where § = minimum

{e1, €3, . . ., Em}, 50 that p € Bs(p) C B.,(p) C Ui, for each 1. That is, Bs(p)
CUiN -+ NUnand p belongs to interior (U, N -+ + N Un). Since p was
an arbitrary point of Uy N - -+ + N Un, this intersection is open.

(2.2) Example. The union of an arbitrary class of open sets is open. Let
{Uqs:a €T} be a class of open sets_and let S be the union of all the sets U,,
a €T. If p €8, then p € Up for some B € T, and since Up is open, B.(p) C
Us C S for some ¢ > 0. Thus p € interior (S) and S is open.

(2.3) Example. The intersection of any class of closed sets is closed. Let
{Fe:a €T} be a class of closed sets whose intersection is D. A point belongs
to each F, if and only if it does not belong to any of the sets Fg,  €T. S =
U F, is known to be open by Example (2.2) and D is consequently closed.

A subset V of the set D in R* is called relatively open in D if for each
p € V there is a ball B,(p) centered at p such that B,(p) "'V = B,(p) N\ D.
Corresponding to this, a subset F' of the set D in R" is called relatively
closed in D if D N Fe is relatively open in D. The consequences of these
definitions are left to the exercises.

Exercises

2.1 Show that V is relatively open in D if and only if V = D N W for some
open subset W in R~.
2.2 Give an example of a set which is neither closed nor open.

A sequence of sets Ay, As, . . ., Aa, . . . is monotone decreasing or
just decreasing if A; DA, D -+ - DA, DA 1D " 0.
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2.3 Give an example of a sequence of open sets {U.} which is decreasing
and has empty intersection, M U, = &.
n=1
2.4 Give an example of a sequence of closed sets {F,} which is decreasing
«©

and has empty intersection, M F, = &.

n=1

2.5 Show that the intersection of a countable number of open sets can be
closed; can be a set which is neither open nor closed; can be open.

2.6 Show that the union of a countable number of closed sets can be a set
which is neither open nor closed.

2.7 Show that if F;, . . ., F are closed subsets of R", then so is F; U

+ + U F. A finite union of closed sets is closed.

2.8 For each subset F C R» let cl (F) denote the intersection of all the

closed subsets of R* which contain F. cl (F) is closed by Example (2.3).

(a) Show that cl (F) is the smallest closed subset of R* which contains F.

(b) Show cl (F) = F if and only if F is already closed. In particular cl (cl (F)) =
cl (F) for any subset F.

(¢) Show el (F\UE) Decl(F)\Ucl(E) for any E and F in R™.

2.9 Let B;(q) = interior B,(g) = {p € R*:d(p, ¢) < &} be the open e-ball
centered at q. ¢ = (a!, . . . , a) is called a rational point if each of its coordi-
nates a* is a rational number.

(a) Show that the set of rational points of R is countable.

(b) Let U = {B{(g):¢ is a rational number and ¢ is a rational point of R"}.
Show that the class of subsets U of R" is countable.

(¢) If p is an interior point of E, show that there is a set Be(g) € U such that
p €EB(q) CE.

(d) Show that each open set J in R” can be expressed as a (countable) union of
sets in the class .

2.10 Show that the class of open subsets of R” is not countable.

2.11 (Based on Exercise 2.9.) If U is a class of open subsets of R", let
V =\U{W:W &€ U} be the union of all the sets in V. Show that U has a count-
able subclass Uy C U such that V.= U {W: W & U,}.

A set E is called a G5 (““G-delta”) if it can be expressed as the inter-

section of a countable number of open sets. £ = M Vi, where V; is open.
k=1

2.12 Show that the unit ball B;((0, . . . , 0)) centered at the origin is a Gj.

For each closed set F C R™ and each p € R* put
d(p, F) = inf {d(p, ¢):q € F}.

2.13 Show that whenever F is closed and € > 0 the set F, = {q:d(q, F) < €}
is open.
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2.14 (Based on Exercise 2.13.) Show that F = M Fy;. That is, show that
k=1

each closed subset of R is a Gj.
2.15 For each subset 4 C R* let U(A) = {q € A:B.(q) N A is at most
countable for some ¢ > 0}. Show U(A) is a countable subset of A.

A class U of subsets of R™ is a covering of B or covers Bif U {U:U &
U} O B. U is a subcovering of the preceding covering if U C U and U
covers B. U is a finite subcovering or countable subcovering of B if the class
QU is finite or countable, respectively.

2.16 Let U be a covering of B and suppose each U &€ U is open. Show that
U has a countable subcovering U of B. [HINT: See Exercises 2.9 and 2.11.]

3 Sequences

A sequence pi, ps, . . . , Pr, . . . of points of R" converges to the point
p—in symbols, lim, p;x = porlim p;, = p—if and only if for each neighbor-
hood V of p the set {k:pr & V' is finite. In this case p is called the limat
of the sequence {pn}._;. (The reader is cautioned that the points p; need
not differ for different values of j. It is even perfectly possible that
p1 = px for all k.) Since each B,(p) is a neighborhood of p, lim p, = p if
and only if for each € > 0, ||px — p|| < &, except possibly for a finite
number of k’s. Stated alternatively, lim p,, = p if and only if the limit
of the numerical sequence {|px — p||} is zero. The concept of convergence
can be phrased in another manner. The sequence {pi}r., 1s ultimately in
the set J if and only if {k:pi € J} is finite. In this terminology a sequence
{Pm}m_y converges to the point p if and only if it is ultimately in each
neighborhood of p.

R™ is the space of n-tuples of real numbers, so that a sequence whose

kth term is px = (ar, . . . , a}) gives rise to n sequences of real numbers
fap, k=1,2, ...}, ..., 1a; k=1,23 .. .}. The inequalities
@.1) max {la —al, . .., |af —a|} < [pe — Pl

< nmax {|ag —al|, . . ., |af — a”|}
show that lim p, = p where p = (a!, . . . , @) if and only if lim; af = @’
for each 7 =1, 2, . . . , n. This last observation can be exploited to

reduce many properties of sequences in R* to corresponding properties
for sequences of real numbers.

(3.2) Example. {p:} is a Cauchy sequence in R" if for each ¢ > 0 the set
{j:for some m > j, |[pm — p;|| > =} is finite. Every Cauchy sequence in R" con-
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verges. In fact an inequality like the first inequality in (3.1) shows that each of

the subsidiary sequences {a}}, . . . , {as} is a Cauchy sequence of real numbers.
Each Cauchy sequence of real numbers converges (this is one of the basic proper-
ties of R); so lim af = a!, . . ., lim a} = a». According to the observation
preceding this example, lim pr = p where p = (at, . . . , a").

The sequence {g.} is a subsequence of the sequence {py} if gm =
Premy(m =1, 2, . . .) where m — k(m) is a map which assigns to each
positive integer m another positive integer k(m) subject only to the
requirement that k(m + 1) > k(m). The point ¢ is an accumulation point
of the sequence {p;} if for each neighborhood W of ¢ the set {k:p. € W}
is infinite. The sequence {p:} is eventually in the set J if and only if
{k:p, C J} is infinite. In this terminology ¢ is an accumulation point for
{pr} when and only when {p;} is eventually in each neighborhood W of g.

As a further criterion: ¢ is an accumulation point of {p:} if and only if
{pr} has a subsequence {g.} which converges to q. To see this suppose
first that {¢,} is a subsequence of {pi}, gn = Prmy, Which converges to q.
Then for each neighborhood W of ¢ the set {m:q., & W} is finite, con-
sequently {k(m):piwmy = qn € W} is infinite. Since this latter set of
k(m)’s is a subset of {k:pr € W}, it follows that this set too is infinite and
by definition ¢ is an accumulation point of {pi}. Conversely if ¢ is an
accumulation point of {p:}, define inductively

k(1) =1,  k(m) = inf |j:j > k(m — 1), [|p, — Bl <% :

. . - 1
With this definition [[piwmy — ¢l < " for each m; so the subsequence

{qm}, gn = DPremy, converges to gq.

Exercises

3.1 If {g.} is a subsequence of {px} and q is an accumulation point of {gn},
show that ¢ is an accumulation point of {px}.

3.2 If the set D is not closed, show there is a sequence {pi}, px € D, which
converges to a point p & D.

3.3 Construct a sequence with no accumulation points.

3.4 Construct a sequence in R whose set of accumulation points is the unit
interval [0, 1].

3.5 If {p:}, {qx] are sequences in R* with lim, pr = p, ||qx — pil| < 1/k,
show that limy g, = p.

3.6 Let cl (F) be the set of points ¢ which are limits of sequences {gx},
qx € F, chosen from F.

(a) Show that cl (F) is closed.
(b) Show that cl (F) is the smallest closed set containing F.
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3.7 Show that the set of accumulation points of a sequence is closed.
3.8 If Fis a closed set in R, construct a sequence whose set of accumulation
points is F.

A subset P C R" is perfect if (i) P is closed in R*, (ii) each p € P is the
limit of a sequence {q.} of points ¢, € P, g. # p, chosen from P with the
point p itself removed, (iii) P # &, P is not empty.

3.9 Construct examples of perfect and nonperfect closed sets.
3.10 A perfect subset of R" is never countable. Suppose P is perfect and
countable, P = {py, P2, . . . , Dk, . . .}-

(a) Show for some ¢; > 0 there is a closed ball B; of radius &, which contains
infinitely many points of P but does not contain p;.
(b) Show that if By is a closed ball of radius & > 0 which contains infinitely

many points of P but does not contain the points py, p2, . . . , Dk, there is a
ball Biy1 C By of radius gy, 0 < €41 < &, which contains infinitely many
points of P but does no&contain D1, D2y - - - 5 Pkt1-

(c) Suppose the closed balls By DBy D+ + D By D Bgy1 D - - - of radii &, >
€ > ' > & > &1 > * - - have been constructed inductively satisfying

the condltlons in (a) agd (b) above and that lim, & = 0. Show that each
sequence {qm}ﬁqm"e B..'!NP, is a Cauchy sequence.

(d) Obtain a contradlctlon by conmdermg lim,, gm, {qn} asin (c), and thus show
P could not Réve been countable.

3.11 If F is closed in R”, show that F = C U P where C is countable and P
is perfect. [HINT: Put C = U(F) where U(F) is defined as in Exercise 2.15.]

4 Compact sets

If {p«} converges to q then g is the only accumulation point of {p:}, but
in general a sequence which has just one accumulation point need not
converge to that accumulation point. There is, however, one important
situation where this last statement is true. A subset D of R” is compact
if every sequence of points {p:} of D has an accumulation point in D.
Equivalently a subset D of R” is compact if every sequence of points
{pr} of D has a subsequence which converges to a point of D.

(4.1) Example. If D is compact and p is the only accumulation point of the
sequence {px} of points of D, then lim p, = p. Suppose on the contrary that for
some neighborhood W of p {k:px & W} is infinite. In this case {pi} has a sub-
sequence {q»} with ¢. & W for each m. {g.} is still a sequence of points in D
and hence {¢.} has an accumulation point ¢ which (Exercise 3.1) is an accumula-
tion point of {px}. As p is the only accumulation point of {pi}, p = ¢. This



