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Preface

Differential equations first appeared in the late seventeenth century in the
work of Isaac Newton, Gottfried Wilhelm Leibniz, and the Bernoulli broth-
ers, Jakob and Johann. They occurred as a natural consequence of the
efforts of these great scientists to apply the new ideas of the calculus to
certain problems in mechanics, such as the paths of motion of celestial bod-
ies and the brachistochrone problem, which asks along which path from
point P to point @) a frictionless object would descend in the least time.
For over 300 years, differential equations have served as an essential tool
for describing and analyzing problems in many scientific disciplines. Their
importance has motivated generations of mathematicians and other scien-
tists to develop methods of studying properties of their solutions, ranging
from the early techniques of finding exact solutions in terms of elementary
functions to modern methods of analytic and numerical approximation.
Moreover, they have played a central role in the development of mathe-
matics itself since questions about differential equations have spawned new
areas of mathematics and advances in analysis, topology, algebra, and ge-
ometry have often offered new perspectives for differential equations.

This book provides an introduction to many of the important topics
associated with ordinary differential equations. The material in the first
six chapters is accessible to readers who are familiar with the basics of cal-
culus, while some undergraduate analysis is needed for the more theoretical
subjects covered in the final two chapters. The needed concepts from linear
algebra are introduced with examples, as needed. Previous experience with
differential equations is helpful but not required. Consequently, this book
can be used either for a second course in ordinary differential equations or
as an introductory course for well-prepared students.

The first chapter contains some basic concepts and solution methods
that will be used throughout the book. Since the discussion is limited to
first-order equations, the ideas can be presented in a geometrically simple
setting. For example, dynamics for a first-order equation can be described
in a one-dimensional space. Many essential topics make an appearance
here: existence, uniqueness, intervals of existence, variation of parame-
ters, equilibria, stability, phase space, and bifurcations. Since proofs of
existence-uniqueness theorems tend to be quite technical, they are reserved
for the last chapter.

ix
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Systems of linear equations are the major topic of the second chapter.
An unusual feature is the use of the Putzer algorithm to provide a con-
structive method for solving linear systems with constant coefficients. The
study of stability for linear systems serves as a foundation for nonlinear
systems in the next chapter. The important case of linear systems with
periodic coefficients (Floquet theory) is included in this chapter.

Chapter 3, on autonomous systems, is really the heart of the subject
and the foundation for studying differential equations from a dynamical
viewpoint. The discussion of phase plane diagrams for two-dimensional
systems contains many useful geometric ideas. Stability of equilibria is in-
vestigated by both Liapunov’s direct method and the method of lineariza-
tion. The most important methods for studying limit cycles, the Poincare-
Bendixson theorem and the Hopf bifurcation theorem, are included here.
The chapter also contains a brief look at complicated behavior in three
dimensions and at the use of Mathematica for graphing solutions of differ-
ential equations. We give proofs of many of the results to illustrate why
these methods work, but the more intricate verifications have been omitted
in order to keep the chapter to a reasonable length and level of difficulty.

Perturbation methods, which are among the most powerful techniques
for finding approximations of solutions of differential equations, are intro-
duced in Chapter 4. The discussion includes singular perturbation prob-
lems, an important topic that is usually not covered in undergraduate texts.

The next two chapters return to linear equations and present a rich
mix of classical subjects, such as self-adjointness, disconjugacy, Green’s
functions, Riccati equations, and the calculus of variations.

Since many applications involve the values of a solution at different
input values, boundary value problems are studied in Chapter 7. The
contraction mapping theorem and continuity methods are used to examine
issues of existence, uniqueness, and approximation of solutions of nonlinear
boundary value problems.

The final chapter contains a thorough discussion of the theoretical ideas
that provide a foundation for the subject of differential equations. Here we
state and prove the classical theorems that answer the following questions
about solutions of initial value problems: Under what conditions does a
solution exist, is it unique, what type of domain does a solution have, and
what changes occur in a solution if we vary the initial condition or the
value of a parameter? This chapter is at a higher level than the first six
chapters of the book.

There are many examples and exercises throughout the book. A sig-
nificant number of these involve differential equations that arise in applica-
tions to physics, biology, chemistry, engineering, and other areas. To avoid
lengthy digressions, we have derived these equations from basic principles
only in the simplest cases.

We would like to thank Deborah Brandon, Ross Chiquet, Valerie Cor-
mani, Lynn Erbe, Kirsten Messer, James Mosely, Mark Pinsky, Mohammad
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Chapter 1

First-Order Differential
Equations

1.1 Basic Results

In the scientific investigation of any phenomenon, mathematical models
are used to give quantitative descriptions and to derive numerical conclu-
sions. These models can take many forms, and one of the most basic and
useful is that of a differential equation, that is, an equation involving the
rate of change of a quantity. For example, the rate of decrease of the mass
of a radioactive substance, such as uranium, is known to be proportional
to the present mass. If m(t) represents the mass at time ¢, then we have
that m satisfies the differential equation

m' = —km,

where k is a positive constant. This is an ordinary differential equation since
it involves only the derivative of mass with respect to a single independent
variable. Also, the equation is said to be of first-order because the highest
order derivative appearing in the equation is first-order. An example of
a second-order differential equation is given by Newton’s second law of
motion
mz” = f(t,z,z),

where m is the (constant) mass of an object moving along the z-axis and
located at position x(t) at time t, and f (¢, z(t), 2'(t)) is the force acting on
the object at time ¢.

In this chapter, we will consider only first-order differential equations
that can be written in the form

z' = f(t, ), (1.1)
where f : (a,b) x (¢,d) — R is continuous, —o0o < a < b < oo, and

—o<c<d< .

Definition 1.1 We say that a function x is a solution of (1.1) on an interval
I C (a,b) provided ¢ < z(t) < d for t € I, z is a continuously differentiable
function on I, and

I,(t) = f(t,.’l:(t)),
fort e I.
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Definition 1.2 Let (g, z¢) € (a,b) X (¢,d) and assume f is continuous on
(a,b) x (c,d). We say that the function z is a solution of the initial value
problem (IVP)

¢’ = f(t,z), z(to) = o, (1.2)
on an interval I C (a,b) provided to € I, z is a solution of (1.1) on I, and
z(to) = zo.

Note, for example, that if (a,b) = (¢,d) = (—00, 00), then the function
m defined by m(t) = 400e =%, t € (—o00, o0) is a solution of the IVP
m' = —km, m(0) =400
on the interval I = (—o0, 00).

Solving an IVP can be visualized (see Figure 1) as finding a solution
of the differential equation whose graph passes through the given point

(to, o).

FIGURE 1. Graph of solution of IVP.

We state without proof the following important existence-uniqueness
theorem for solutions of IVPs. Statements and proofs of some existence
and uniqueness theorems will be given in Chapter 8.

Theorem 1.3 Assume f : (a,b) x (¢,d) — R is continuous, where —oco <
a<b<ooand—oo<c<d< oo Let (tg, zo) € (a,b) x(c,d), then the IVP
(1.2) has a solution x with a mazimal interval of existence (o, w) C (a,b),
where a < tg < w. If a < «, then

tEIél+ xz(t) =c¢, or tl_1'r51+ z(t) =d

and if w < b, then

lim z(t)=¢, or lim z(t) =d.

t—w— t—w—
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If, in addition, the partial derivative of f with respect to x, fz, is continuous
on (a,b) x (c,d), then the preceding IVP has a unique solution.

We now give a couple of examples related to Theorem 1.3. The first
example shows that if the hypothesis that the partial derivative f, is con-
tinuous on (a, b) X (¢, d) is not satisfied, then we might not have uniqueness
of solutions of IVPs.

Example 1.4 (Nonuniqueness of Solutions to IVPs) If we drop an object
from a bridge of height h at time ¢ = 0 (assuming constant acceleration of
gravity and negligible air resistance), then the height of the object after ¢
units of time is z(t) = —3gt*> + h. The velocity at time ¢ is z'(t) = —gt, so
by eliminating ¢, we are led to the IVP

' = f(t,z) == —/2g9|h — x|, z(0) = h. (1.3)

Note that this initial value problem has the constant solution z(t) = h,
which corresponds to holding the object at bridge level without dropping
it! We can find other solutions by separation of variables. If h > z, then

m% -f

Computing the indefinite integrals and simplifying, we arrive at

a(t) = —g(t —C)2+h,
where C' is an arbitrary constant. We can patch these solutions together
with the constant solution to obtain for each C' > 0

sy h, for t<C
T h-4(t-0)?2 for t>C.

Thus for each C' > 0 we have a solution of the IVP (1.3) that corresponds
to releasing the object at time C. Note that the function f defined by
f(t,x) = —/2g|h — 2| is continuous on (—o0, 00) X (=00, 00) so by Theorem
1.3 the IVP (1.3) has a solution, but f, does not exist when z = h so we
cannot use Theorem 1.3 to get that the IVP (1.3) has a unique solution. A

To see how bad nonuniqueness of solutions of initial value problems can
be, we remark that in Hartman [17], pages 18-23, an example is given of a
scalar equation ' = f(¢,x), where f : R x R — R, is continuous, where for
every IVP (1.2) there is more than one solution on [tg, to+ €] and [to — €, to]
for arbitrary € > 0.

The next example shows even if the hypotheses of Theorem 1.3 hold
the solution of the IVP might only exist on a proper subinterval of (a, b).

Example 1.5 Let k& be any nonzero constant. The function f : R? —
R defined by f(t,r) = ka? is continuous and has a continuous partial
derivative with respect to x. By Theorem 1.3, the IVP

' =ka?, z(0)=1
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has a unique solution with a maximal interval of existence (a,w). Using
separation of variables, as in the preceding example, we find

1
C—kt
When we apply the initial condition z(0) = 1, we have C = 1, so that the
solution of the IVP is

z(t) =

1
1—kt’
with maximal interval of existence (—oo,1/k) if k¥ > 0 and (1/k,00) if
k < 0. In either case, z(t) goes to infinity as t approaches 1/k from the
appropriate direction.

z(t) =

Observe the implications of this calculation in case z(t) is the density
of some population at time ¢. If £ > 0, then the density of the population
is growing, and we conclude that growth cannot be sustained at a rate
proportional to the square of density because the density would have to
become infinite in finite time! On the other hand, if k¥ < 0, the density is
declining, and it is theoretically possible for the decrease to occur at a rate
proportional to the square of the density, since z(t) is defined for all ¢ > 0
in this case. Note that lim; , z(t) =0 if £ < 0. A

1.2 First-Order Linear Equations

An important special case of a first-order differential equation is the
first-order linear differential equation given by

2 = p(t)z +q(t), (1.4)

where we assume that p : (a,b) — R and ¢ : (a,b) — R are continuous
functions, where —oo < a < b < co. In Chapter 2, we will study systems
of linear equations involving multiple unknown functions. The next theo-
rem shows that a single linear equation can always be solved in terms of
integrals.

Theorem 1.6 (Variation of Constants Formula) If p : (a,b) — R and
q: (a,b) — R are continuous functions, where —oo < a < b < co, then the
unique solution x of the IVP

' =p(t)z+q(t), z(to) = o, (1.5)
where to € (a,b), zo € R, is given by

t t t s
2(t) = el P dr L i p(r) dr / e~ L P a0y g,

to

t € (a,b).
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Proof Here the function f defined by f(¢,z) = p(t)z + ¢(t) is continuous
on (a,b) x (—oo,00) and f.(t,z) = p(t) is continuous on (a, b) x (—o0,00).
Hence by Theorem 1.3 the IVP (1.5) has a unique solution with a maximal
interval of existence (a,w) C (a,b) [the existence and uniqueness of the
solution of the IVP (1.5) and the fact that this solution exists on the whole
interval (a, b) follows from Theorem 8.65]. Let

3 t s
z(t) :== ef*to p(7) dTrL‘o - ej'tl' B G / e Jio P(7) dT‘I(s) ds
to

for t € (a,b). We now show that z is the solution of the IVP (1.5) on the
whole interval (a,b). First note that z(t9) = z¢ as desired. Also,

t
Z(t) = p)elo? T Ty p(t)eln P / e~ Jo P44y ds + q(2)

to

Il

Pt rt t "8
p(t) el P 8750 4 i P dT/ e TP () ds| + q(t)

to

[l

p(t)z(t) + q(t)
for t € (a,b). d

In Theorem 2.40, we generalize Theorem 1.6 to the vector case. We
now give an application of Theorem 1.6.

Example 1.7 (Newton’s Law of Cooling) Newton’s law of cooling states
that the rate of change of the temperature of an object is proportional to the
difference between its temperature and the temperature of the surrounding
medium. Suppose that the object has an initial temperature of 40 degrees.
If the temperature of the surrounding medium is 70 + 20e~2* degrees after
t minutes and the constant of proportionality is & = —2, then the initial
value problem for the temperature z(t) of the object at time ¢ is

z' = —2(x — 70 — 20e~2%), z(0) = 40.
By the variation of constants formula, the temperature of the object after
t minutes is
Mt t t s
x(t) = 40elo ~247 4 elo —2d7 / elo 297(140 4 40e=2°) ds
0
t
= 40e7% + e*zt/ (140€** + 40) ds
0
= 40e™% + e72[70(e? — 1) 4 401
10(4t — 3)e2 4 70.

Sketch the graph of z. Does the temperature of the object exceed 70 degrees
at any time ¢? A
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1.3 Phase Line Diagrams

If, in equation (1.1), f depends only on z, we get the autonomous
differential equation

2 = (). (1.6)

We always assume f : R — R is continuous and usually we assume its
derivative is also continuous. The fundamental property of autonomous
differential equations is that translating any solution of the autonomous
differential equation along the t-axis produces another solution.

Theorem 1.8 If x is a solution of the autonomous differential equation
(1.6) on an interval (a,b), where —oco < a < b < oo, then for any constant
c, the function y defined by y(t) := x(t—c), fort € (a+c,b+c) is a solution
of (1.6) on (a+c,b+c).

Proof Assume z is a solution of the autonomous differential equation (1.6)
on (a,b); then z is continuously differentiable on (a,b) and

' (t) = f(x(t)),
for t € (a,b). Replacing t by ¢ — ¢ in this last equation, we get that
'(t —c) = f(a(t — ),
for t € (a4 ¢, b+ ¢). By the chain rule of differentiation we get that

d

St — o)) = fa(t - o)),

for t € (a+¢,b+ ¢). Hence if y(t) := z(t — ¢) for t € (a+¢,b+ ¢), then y
is continuously differentiable on (a + ¢, b+ ¢) and we get the desired result
that

fort e (a+c,b+c). O

Definition 1.9 If f(zg) = 0 we say that zy is an equilibrium point for
the differential equation (1.6). If, in addition, there is a § > 0 such that
f(x) #0 for |z — x| < 0, x # xg, then we say x is an isolated equilibrium
point.

Note that if z¢ is an equilibrium point for the differential equation
(1.6), then the constant function z(t) = z for ¢t € R is a solution of (1.6)
on R.

Example 1.10 (Newton’s Law of Cooling) Consider again Newton’s law
of cooling as in Example 1.7, where in this case the temperature of the
surrounding medium is a constant 70 degrees. Then we have that the
temperature z(t¢) of the object at time ¢ satisfies the differential equation

' = —2(z — 70).
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Note that z = 70 is the only equilibrium point. All solutions can be written
in the form

z(t) = De 2" + 170,
where D is an arbitrary constant. If we translate a solution by a constant
amount ¢ along the t-axis, then

2(t — ¢) = De2*=9) 4+ 70 = De**e™% + 70

is also a solution, as predicted by Theorem 1.8. Notice that if the tempera-
ture of the object is initially greater than 70 degrees, then the temperature
will decrease and approach the equilibrium temperature 70 degrees as t goes
to infinity. Temperatures starting below 70 degrees will increase toward the
limiting value of 70 degrees. A simple graphical representation of this be-
havior is a “phase line diagram,” (see Figure 2) showing the equilibrium
point and the direction of motion of the other solutions.

- - ¢ T
70

FIGURE 2. Phase line diagram of z’ = —2(z — 70).

A

Definition 1.11 Let ¢ be a solution of (1.6) with maximal interval of
existence (a,w). Then the set

{o(t) : t € (a,w)}

is called an orbit for the differential equation (1.6).

Note that the orbits for
' = —2(z — 70)

are the sets
(—00,70), {70}, (70,00).

A convenient way of thinking about phase line diagrams is to consider
z(t) to be the position of a point mass moving along the z-axis and z’(t) =
f(z(t)) to be its velocity. The phase line diagram then gives the direction
of motion (as determined by the sign of the velocity). An orbit is just the
set of all locations of a continuous motion.

Theorem 1.12 Assume that f : R — R is continuously differentiable.
Then two orbits of (1.6) are either disjoint sets or are the same set.

Proof Let ¢; and ¢2 be solutions of (1.6). We will show that if there are
points t,%s such that

o1(t1) = ¢a(t2),



