PRENTICE

HALL
INTERNATIONAL
EDITIONS

PAUL BUGL




DIFFERENTIAL EQUATIONS
Matrices and Models

PAUL BUGL
University of Hartford

PRENTICE HALL INTERNATIONAL, INC.
Englewood Cliffs, New Jersey 07632




This edition may be sold only in those countries

to which it is consigned by Prentice-Hall International.
It is not to be re-exported and it is not for sale

in the USA, Mexico or Canada.

(©1995 by Prentice Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means, without
permission in writing from the publisher.

Printed in the United States of America

10987654321

ISBN 0-13-320995-4

Prentice Hall International (UK) Limited, London
Prentice Hall of Australia Pty. Limited, Sydney
Prentice Hall Canada Inc., Toronto

Prentice Hall Hispanoamericana, S.A., Mexico
Prentice Hall of India Private Limited, New Delhi
Prentice Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall, Inc. Englewood Cliffs, New Jersey



DIFFERENTIAL EQUATIONS



PREFACE

Historically, the study of differential equations was a major driving force in the develop-
ment of the ideas of the calculus. Models of physical problems were formulated in terms of
differential equations whose solution often gave rise to new areas of study in both mathematics
and the sciences. Problems worthy of study have become ever more difficult for the classi-
cal techniques. Reasonably accurate models frequently require the use of several dependent
variables and a utilization of the power of matrix algebra.

Previously, the study of differential equations was a collection of sometimes unrelated
techniques. However, change is moving through the course. The use of computer algebra
systems renders superfluous some of the elaborate techniques needed for special cases. More
emphasis on systems of linear ordinary differential equations reflects greater realism and
requires an early introduction to linear algebra. As material is removed from the course,
more attention can and should be given to modeling; students must learn how to properly
formulate the problems that they, in turn, should solve.

This book is intended to provide a modern study of differential equations in the spirit of
reasonable, but overdue, reform. Matrix algebra is presented along with many of the elementary
numerical techniques needed for the computer implementation of its procedures. The methods
for the solution of differential equations appear only after models which generate the equations
have been studied. The ultimate goal of the text is the use of matrix methods for the solution
of systems of linear ordinary differential equations. The reader who comes away with an
understanding of the power of the state-transition matrix approach will have achieved the aim
of the book.

A large proportion of students taking a course in differential equations major in either
engineering or the physical sciences. Such students will have taken two semesters of calculus-
based physics and possibly both statics and dynamics and/or a first course in electrical circuits.
For this reason, the models most frequently used are those of classical mechanics and network
analysis. They have seen these before and are usually more comfortable with them. Any student
who sees these models in another context will suffer no harm and repeated study can only
reinforce concepts learned elsewhere. To make it easier for students, the Lagrangian approach
is used for formulating mechanics problems, thus avoiding the difficulty of constructing the
free body diagram.

Many of the classical solution methods are not presented in this book. Exact equations
and other such are nowhere to be found. A method appears only if it is useful in solving
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equations arising from reasonable models. Undetermined coefficients is given short shrift.
Some methods which seem not to be a common part of the curriculum have been included,
e.g., the LU-decomposition, pivoting and scaling, ill-conditioned systems, boundary and initial
value Green’s functions, the matrix exponential, controllability, and observability. On the
other hand, series solutions are discussed in detail because none of the usual computer algebra
systems can generate the general form of a solution for a simple but arbitrary second order
equation. It is also possible to use this book for a more traditional course, if that it the aim.

The matrix language Matlab is used as an adjunct to keep one from being overwhelmed
by the details involved in programming languages like Pascal, C, or FORTRAN. Matlab’s
notation is rapidly becoming universally adopted. The use of a computer algebra system
would be helpful, insofar as large parts of several chapters could be omitted. In that case, use
could be made of the appropriate lab manual which accompanies this text.

An attempt has been made to provide the reader with a large number of detailed nontrivial
examples to enhance self-study.

Some say a book is only as good as its problems. The exercise sets have been designed to be
broad-based. There are some simple computational problems, verifications, many “thought”
problems, and a large number of modeling applications. Each chapter ends with a set of
supplementary and complementary problems which are designed to extend either the material
in the text or the reader. These problems are meant to be more interesting.

The first two chapters can be covered in either order.

Sections are organized logically so as to completely cover a single subject area. For this
reason, one section can rarely be covered in one fifty minute class. Instead, subsections may
be the units of class time.

Chapter 1 covers the lion’s share of complex matrix algebra. Systems of linear algebraic
equations are solved using pivotal reduction (Gauss-Jordan elimination with partial pivoting).
The ideas of leading and nonleading variables and their relation to the rank and nullity of
the coefficient matrix and its row-reduced echelon form are emphasized. Inverses appear
as theoretical constructs for the further study of linear equations. Determinants are defined
in terms of elementary row operations and applied to solving systems of linear equations
and finding inverses of square matrices. Computer solution of linear systems and the LU-
decomposition are discussed as optional material.

Chapter 2 gives an introduction to models and differential equations. Graphical and nu-
merical solutions are discussed before any analytical methods. First order equations are solved
using either separation of variables or the integrating factor for linear equations. As an option,
Runge-Kutta methods are derived as multistage methods.

Chapter 3 introduces the complementary concepts of linear spaces and linear transfor-
mations. Infinite dimensional spaces are not shunned. Proofs are given when they use the
ideas of systems of linear equations or provide a method of solution. Many results are only
stated. Induced matrix norms and condition numbers are discussed and used as an assessment
of the computational solvability of a linear system. Optional sections on the Gram-Schmidt
procedure and fundamental subspaces associated with a matrix rounds out the chapter.
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Chapter 4 introduces linear ODE’s in terms of differential operators and trial solutions.
Some of the ideas of linear spaces are used. For the most part, the treatment is fairly classical,
but the intention is that computer software be used to speed the presentation. Applications to
mechanical and electrical systems are given. Boundary value Green’s functions are introduced
as an optional technique for reducing a nonhomogeneous problem to a quadrature. Most of
this material could be omitted if the course will utilize a computer algebra system.

Chapter 5 develops the ideas of the Laplace transform in six relatively compact sections.
The evaluation of the transform and the inverse transform are unified into a single section for
each. The geometrical interpretation of the convolution product is given. Transforms are then
applied to solving linear ODE’s and finding Green’s functions. Applications to elastic beam
problems illustrate the solution of problems with discontinuous forcing functions. A computer
algebra system would be a valuable tool to eliminate much of the algebraic tedium involved
in many of the calculations.

Chapter 6 begins with models which require more than one dependent variable, after which
systems of equations are reduced to standard matrix form. After the ideas of linear systems
are developed, the matrix eigenvalue problem is studied in some detail, including the Jordan
normal form. Linear systems solution methods are then presented. The state-transition matrix
is introduced and functions of matrices are discussed. Several methods for the calculation of the
matrix exponential are given and applied to solving homogeneous and nonhomogeneous linear
systems of ODE’s. Phase portraits of linear systems are studied in terms of the eigenvalues
of the coefficient matrix. Initial value Green’s functions and the ideas of controllability and
observability of a system are also discussed, as are Laplace transform methods for linear
systems.

Chapter 7 provides an overview of nonlinear systems. In addition to the usual discussion
of phase plane analysis, stability, and limit cycles, there is an outline of regular perturbation
methods. Brief introductions to singular perturbations and chaotic systems are also given.

Chapter 8 contains a fairly detailed coverage of series solutions to linear equations with
variable coefficients including the method of Frobenius.

Chapter 9 closes things out with an optional survey of special functions.

A listing of the Matlab commands that a student might use are collected in the first appendix.
Other appendices are included as reviews or brief discussions of complex numbers, complex
functions, unit steps and impulses, partial fraction expansions, and infinite series.

Answers are provided to most of the odd-numbered problems.

Ancillary Material
In addition to the text, other materials are available for use in teaching a course from this book.
e Student version of Matlab 4.0 which includes the Maple kernel can be packaged with

the text. This includes the valuable command reference book. There are Windows and
Macintosh versions.

e A student solution manual contains the fairly complete solutions to most of the odd-
numbered problems in the exercise sets in the book.
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e Aninstructor’s solutions manual contains solutions to almost all of the problems in the
book, including the supplementary and complementary problems.

e A computer lab manual which provides the student with problems and projects for
exploration and experimentation. It comes in three separate versions: Matlab 4.0,
Maple, and Mathematica.
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MATRIX ALGEBRA

1.1 PREVIEW

Matrices lie at the very foundation of applied mathematics. They are the bedrock on which
many models are built. Whenever more than one dependent variable is involved, a problem
can be phrased in the language of matrix theory so that a number of powerful methods can be
brought to bear.

We begin with some linear multivariate models that can be simplified by the use of matrices.
All of the necessary operations of matrix algebra and their properties are introduced. Special
matrices are defined and studied. Most problems that can be formulated in the language of
matrices eventually lead to the problem of solving a system of linear algebraic equations.
Section 1.4 presents the method of pivotal reduction for arriving at a solution when one exists.
It also discusses the forms and existence of solutions.

The inverse of a matrix is introduced as a formal alternative to the use of the method of
pivotal reduction. We restrict our attention to square matrices and their reduction by elementary
matrices. Some of the implications of invertibility are explored. Finally, a model of cascaded
two-port networks is introduced and the inverse is used to construct solutions.

The concept of the determinant of a square matrix as an alternating multilinear functional
is developed by way of elementary row operations. The expansion by cofactors is stated, as
is Cramer’s Rule for solving square systems. Then the adjugate matrix is used to compute the
inverse of a nonsingular matrix.

Two optional sections deal with the computer implementation of techniques for solving
systems of linear equations. The method of Gaussian elimination is compared with pivotal
reduction with a discussion of pivoting and scaling. A simple example of an ill-conditioned
system is given, and the effects of computer round-off are discussed. The methodology of the
LU-decomposition is presented and applied to solving linear systems.



2 CHAP.1 Matrix Algebra

1.2 LINEAR MULTIVARIATE MODELS

Mathematical models often devolve upon solving systems of simultaneous equations. Fre-
quently, these equations involve the unknowns raised to the first power and there are no prod-
ucts of unknowns. Such models pervade applied mathematics. What follows is but a small
sample of them.

1.2.1 Steady State AC Electrical Circuits

Anelectrical circuit is a collection of resistors, inductors, and capacitors connected by idealized
wires joined at nodes. When there is an alternating current source, each of the circuit elements
can be thought of as having an impedance, Z, that satisfies the generalized Ohm’s Law,

=iz,

where F is the voltage drop across the element and [ is the current flowing through it. In a
general alternating current circuit, the impedance Z is complex and has the form

wC

where R is the resistance (measured in ohms €2), L is the inductance (measured in henrys H),
C' is the capacitance (measured in farads F), and f = w/27 is the frequency (measured in
hertz Hz) of the AC source.

Most circuits are composed of several loops, each of which has several elements on it. One
method of analyzing a circuit is to assign currents to each loop, write Ohm’s Law separately
for each element, and use the Kirchhoff Voltage Law, which says that the sum of the voltage
drops around a loop must be zero.

This procedure has the advantage of always resulting in as many equations as there are
unknowns.

Z:R—i—i(wL—i),

® EXAMPLE 1.1 The circuit in Figure 1.1 has five loops with unknown loop currents I,
I, I3, 14, and I5 drawn clockwise. If the voltage E is known, set up the linear equations that
determine these currents.

Fig. 1.1



