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Preface

This third edition of THE CALCULUS WITH ANALYTIC GEOMETRY,
like the other two, is designed for prospective mathematics majors
as well as for students whose primary interest is in engineering, the
physical sciences, or nontechnical fields. A knowledge of high-school
algebra and geometry is assumed.

The text is available either in one volume or in two parts: Part I con-
sists of the first sixteen chapters, and Part II comprises Chapters 16
through 21 (Chapter 16 on Infinite Series is included in both parts to make
the use of the two-volume set more flexible). The material in Part I con-
sists of the differential and integral calculus of functions of a single
variable and plane analytic geometry, and it may be covered in a one-year
course of nine or ten semester hours or twelve quarter hours. The second
part is suitable for a course consisting of five or six semester hours or
eight quarter hours. It includes the calculus of several variables and a
treatment of vectors in the plane, as well as in three dimensions, with a
vector approach to solid analytic geometry.

The objectives of the previous editions have been maintained. I have
endeavored to achieve a healthy balance between the presentation of
elementary calculus from a rigorous approach and that from the older,
intuitive, and computational point of view. Bearing in mind that a text-
book should be written for the student, I have attempted to keep the pre-
sentation geared to a beginner’s experience and maturity and to leave no
step unexplained or omitted. I desire that the reader be aware that proofs
of theorems are necessary and that these proofs be well motivated and
carefully explained so that they are understandable to the student who has
achieved an average mastery of the preceding sections of the book. If a
theorem is stated without proof, I have generally augmented the discus-
sion by both figures and examples, and in such cases I have always
stressed that what is presented is an illustration of the content of the
theorem and is not a proof.

Changes in the third edition occur in the first five chapters. The first
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PREFACE

section of Chapter 1 has been rewritten to give a more detailed exposition
of the real-number system. The introduction to analytic geometry in this
chapter includes the traditional material on straight lines as well as that
of the circle, but a discussion of the parabola is postponed to Chapter 14,
The Conic Sections. Functions are now introduced in Chapter 1. I have
defined a function as a set of ordered pairs and have used this idea to
point up the concept of a function as a correspondence between sets of
real numbers.

The treatment of limits and continuity which formerly consisted of
ten sections in Chapter 2 is now in two chapters (2 and 4), with the chap-
ter on the derivative placed between them. The concepts of limit and con-
tinuity are at the heart of any first course in the calculus. The notion of a
limit of a function is first given a step-by-step motivation, which brings
the discussion from computing the value of a function near a number,
through an intuitive treatment of the limiting process, up to a rigorous
epsilon-delta definition. A sequence of examples progressively graded in
difficulty is included. All the limit theorems are stated, and some proofs
are presented in the text, while other proofs have been outlined in the
exercises. In the discussion of continuity, I have used as examples and
counterexamples ‘““common, everyday’’ functions and have avoided those
that would have little intuitive meaning.

In Chapter 3, before giving the formal definition of a derivative, I
have defined the tangent line to a curve and instantaneous velocity in
rectilinear motion in order to demonstrate in advance that the concept of
a derivative is of wide application, both geometrical and physical. The-
orems on differentiation are proved and illustrated by examples. Ap-
plication of the derivative to related rates is included.

Additional topics on limits and continuity are given in Chapter 4.
Continuity on a closed interval is defined and discussed, followed by
the introduction of the Extreme-Value Theorem, which involves such
functions. Then the Extreme-Value Theorem is used to find the absolute
extrema of functions continuous on a closed interval. Chapter 4 concludes
with Rolle’s Theorem and the Mean-Value Theorem. Chapter 5 gives
additional applications of the derivative, including problems on curve
sketching as well as some related to business and economics.

The antiderivative is treated in Chapter 6. I use the term “antidif-
ferentiation” instead of indefinite integration, but the standard notation
J f(x) dx is retained so that you are not given a bizarre new notation that
would make the reading of standard references difficult. This notation will
suggest that some relation must exist between definite integrals, intro-
duced in Chapter 7, and antiderivatives, but I see no harm in this as long
as the presentation gives the theoretically proper view of the definite
integral as the limit of sums. Exercises involving the evaluation of defi-
nite integrals by finding limits of sums are given in Chapter 7 to stress
that this is how they are calculated. The introduction of the definite inte-
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gral follows the definition of the measure of the area under a curve as a
limit of sums. Elementary properties of the definite integral are derived
and the fundamental theorem of the calculus is proved. It is emphasized
that this is a theorem, and an important one, because it provides us with
an alternative to computing limits of sums. It is also emphasized that the
definite integral is in no sense some special type of antiderivative. In
Chapter 8 I have given numerous applications of definite integrals. The
presentation highlights not only the manipulative techniques but also
the fundamental principles involved. In each application, the definitions
of the new terms are intuitively motivated and explained.

The treatment of logarithmic and exponential functions in Chapter 9
is the modern approach. The natural logarithm is defined as an integral,
and after the discussion of the inverse of a function, the exponential
function is defined as the inverse of the natural logarithmic function. An
irrational power of a real number is then defined. The trigonometric
functions are defined in Chapter 10 as functions assigning numbers to
numbers. The important trigonometric identities are derived and used
to obtain the formulas for the derivatives and integrals of these functions.
Following are sections on the differentiation and integration of the trig-
onometric functions as well as of the inverse trigonometric functions.

Chapter 11, on techniques of integration, involves one of the most
important computational aspects of the calculus. I have explained the
theoretical backgrounds of each different method after an introductory
motivation. The mastery of integration techniques depends upon the
examples, and I have used as illustrations problems that the student will
certainly meet in practice, those which require patience and persistence
to solve. The material on the approximation of definite integrals includes
the statement of theorems for computing the bounds of the error involved
in these approximations. The theorems and the problems that go with
them, being self-contained, can be omitted from a course if the instructor
so wishes.

A self-contained treatment of hyperbolic functions is in Chapter 12.
This chapter may be studied immediately following the discussion of the
circular trigonometric functions in Chapter 10, if so desired. The geo-
metric interpretation of the hyperbolic functions is postponed until
Chapter 17 because it involves the use of parametric equations.

Polar coordinates and some of their applications are given in Chap-
ter 13. In Chapter 14, conics are treated as a unified subject to stress their
natural and close relationship to each other. The parabola is discussed in
the first two sections. Then equations of the conics in polar coordinates
are treated, and the cartesian equations of the ellipse and the hyperbola
are derived from the polar equations. The topics of indeterminate forms,
improper integrals, and Taylor's formula, and the computational tech-
niques involved, are presented in Chapter 15.

I have attempted in Chapter 16 to give as complete a treatment of
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infinite series as is feasible in an elementary calculus text. In addition to
the customary computational material, I have included the proof of the
equivalence of convergence and boundedness of monotonic sequences
based on the completeness property of the real numbers and the proofs
of the computational processes involving differentiation and integration
of power series.

The first five sections of Chapter 17 on vectors in the plane can be
taken up after Chapter 5 if it is desired to introduce vectors earlier in the
course. The approach to vectors is modern, and it serves both as an intro-
duction to the viewpoint of linear algebra and to that of classical vector
analysis. The applications are to physics and geometry. Chapter 18 treats
vectors in three-dimensional space, and, if desired, the topics in the first
three sections of this chapter may be studied concurrently with the corre-
sponding topics in Chapter 17.

Limits, continuity, and differentiation of functions of several variables
are considered in Chapter 19. The discussion and examples are applied
mainly to functions of two and three variables; however, statements of
most of the definitions and theorems are extended to functions of n
variables.

In Chapter 20, a section on directional derivatives and gradients is
followed by a section that shows the application of the gradient to finding
an equation of the tangent plane to a surface. Applications of partial
derivatives to the solution of extrema problems and an introduction to
Lagrange multipliers are presented, as well as a section on applications of
partial derivatives in economics. Three sections, new in the third edition,
are devoted to line integrals and related topics. The double integral of a
function of two variables and the triple integral of a function of three
variables, along with some applications to physics, engineering, and
geometry, are given in Chapter 21.

New to this edition is a short table of integrals appearing on the front
and back endpapers. However, as stated in Chapter 11, you are advised
to use a table of integrals only after you have mastered integration.

Louis Leithold
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INFINITE SERIES

16.1 SEQUENCES

16.1.1 Definition

You have undoubtedly encountered sequences of numbers in your pre-
vious study of mathematics. For example, the numbers 5, 7, 9, 11, 13, 15
define a sequence. This sequence is said to be finite because there is a
first and last number. If the set of numbers which defines a sequence does
not have both a first and last number, the sequence is said to be infinite.
For example, the sequence defined by

L 44 ... (1)

is infinite because the three dots with no number following indicate
that there is no last number. We are concerned here with infinite se-
quences, and when we use the word ““sequence” it is understood that
we are referring to an infinite sequence. We define a sequence as a par-
ticular kind of function.

A sequence is a function whose domain is the set of positive integers.

The numbers in the range of the sequence, which are called the ele-
ments of the sequence, are restricted to real numbers in this book.

If the nth element is given by f(n), then the sequence is the set of
ordered pairs of the form (n, f(n)), where n is a positive integer.

e ILLUSTRATION 1: If f(n) =n/(2n + 1), then
fy=% fR2)=% fB)=% f4)=%

and so on. We see that the range of f consists of the elements of sequence
(1). Some of the ordered pairs in the sequence f are (1, 3), (2, ), (3, %),
4, %), and (5, ). A sketch of the graph of this sequence is shown in

Fig. 16.1.1. . ®
f(n)
3 4, 4 5 &
% (1'.% (2'.% (3;7 ( ) ) ( .11)
| 1 L I [
ol 1 2 3 4 5
Figure 16.1.1

Usually the nth element f(n) of the sequence is stated when the ele-
ments are listed in order. Thus, for the elements of sequence (1) we would
write

1234 ., ,_n ..
3579 2n+1

Because the domain of every sequence is the same, we can use the
notation {f(n)} to denote a sequence. So the sequence (1) can be denoted
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by {n/(2n + 1)}. We also use the subscript notation {a,} to denote the
sequence for which f(n) = a,,.

You should distinguish between the elements of a sequence and the
sequence itself, as shown in the following illustration.

e ILLUSTRATION 2: The sequence {1/n} has as its elements the reciprocals
of the positive integers

111 1

1,§/§IZ/ /;l © & @ (2)

The sequence for which

1 if n is odd
f(n)=4 2 e .
s if n is even

has as its elements
1/ %l 1/ %l 1/ %l . . . (3)

The elements of sequences (2) and (3) are the same; however, the se-
quences are different. Sketches of the graphs of sequences (2) and (3)

are shown in Figs. 16.1.2 and 16.1.3, respectively. ®
f(n)
1,1
1 ( o)
(232) .
® 3,3 I
G5 w2 2
| | | | W
O 1 2 3 4 5
Figure 16.1.2
f(n)
(1.1) (31) (5.1)
1 ° ] °
(22
¢ (4,0% (6’ l)
®
| | | | | |
@) 1 2 3 1 5 6 "
5 " o iowe ;l f(n) Figure 16.1.3
32 We now plot on a horizontal axis the points corresponding to suc-
573 ; .. o
7Y cessive elements of a sequence. This is done in Fig. 16.1.4 for sequence
Figure 16.1.4 11 (1) which is {n/(2n+ 1) }. We see that the successive elements of the se-
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16.1.2 Definition

quence get closer and closer to %, even though no element in the sequence
has the value $. Intuitively we see that the element will be as close to %
as we please by taking the number of the element sufficiently large. Or
stating this another way, we can make |n/(2n + 1) — 3| less than any
given € by taking n large enough. Because of this we state that the limit
of the sequence {n/(2n+ 1)} is 3.

In general, if there is a number L such that |a, — L| is arbitrarily
small for n sufficiently large, we say the sequence {a,} has the limit L.
Following is the precise definition of the limit of a sequence.

A sequence {a,} is said to have the limit L if for every € > 0 there exists
a number N > 0 such that |a, — L| < € for every integer n > N; and we
write

lim a,=1L

n—+o

ExaMPLE 1: Use Definition
16.1.2 to prove that the sequence

Ereay

has the limit 3.

soLUTION: We must show that for any € > 0 there exists anumber N > 0
such that

n 1 .
M1 E. <e€ for every integer n > N

n 1‘_|2n—2n—1_| -1 ’ 1

2n+1 2| [2@n+1) | |[an+2| 4n+2

Hence, we must find a number N > 0 such that

1 .
i <€ for every integer n > N
But
L < € isequivalentto 2n+1> 2
4n+2 2e

which is equivalent to

1—2e
n> P
So it follows that

n 1 1—2¢
2n+1 2 4e

Therefore, if N = (1 — 2¢)/4¢, Definition 16.1.2 holds.
In particular, if e=4%, N= (1—1%)/3=3$. So

<e€ for every integer n >

n 1 1 . 3
1 5‘ <3 for every integer n > 2
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For instance, if n = 4,
n 1‘ _ ’4 1‘ _ —_ll

n+1 2| [9 2

16.1.3 Theorem

e ILLUSTRATION 3: Consider the sequence {(—1)"*!/n}. Note that the nth
element of this sequence is (—1)"*!/n and (—1)"**! is equal to +1 when n
is odd and to —1 when # is even. Hence, the elements of the sequence can
be written

g=ll 1% ..,

2’3" 4’5 n
In Fig. 16.1.5 are plotted points corresponding to successive elements
of this sequence. In the figure, a, =1, a,=—%, a;=3%, a,=—%, a; =14,
ag=—%, a;=1%, ag=—%, ayg =14, a,0=—7s. The limit of the sequence is 0
and the elements oscillate about 0. °

Figure 16.1.5

Compare Definition 16.1.2 with Definition 4.1.1 of the limit of f(x)
as x increases without bound. The two definitions are almost identical;

however, when we state that lim f(x) = L, the function f is defined for
T+
all real numbers greater than some real number R, while when we con-
sider lim a,, n is restricted to positive integers. We have, however, the
n—+o0

following theorem which follows immediately from Definition 4.1.1.

If lim f(x) =L, and f is defined for every positive integer, then also
x—+®

lim f(n) = L when n is any positive integer.
n—+o

The proof is left as an exercise (see Exercise 20).

® ILLUSTRATION 4: We verify Theorem 16.1.3 for the sequence of Exam-
ple 1. For that sequence f(n) = n/(2n + 1). Hence, f(x) = x/(2x+ 1) and

X —— lim L .1
rﬂ+m2+1 2

pa

lim 5T
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16.1.4 Definition

It follows then from Theorem 16.1.3 that lim f(n) =% when n is any

n—-+o

positive integer. This agrees with the solution of Example 1. °

If a sequence {a,} has a limit, the sequence is said to be convergent, and
we say that a, converges to that limit. If the sequence is not convergent,
it is said to be divergent.

EXAMPLE 2: Determine if the
sequence

)
2n®+1

is convergent or divergent.

soLUTION: We wish to determine if lim 4n%/(2n% + 1) exists. Let f(x) =

n—+0
4x%[(2x* + 1) and investigate lim f(x).
&Ir—+o
. 4x2 . 4
ATl S
24

Therefore, by Theorem 16.1.3, lim f(n) = 2. We conclude that the given

n-+oo
sequence is convergent and that 4n*/(2n® + 1) converges to 2.

ExaMpPLE 3: Prove that if |7| < 1,
the sequence {r"} is convergent
and that r" converges to zero.

soLuTioN: First of all, if r = 0, the sequence is {0} and lim 0= 0. Hence,
2+
the sequence is convergent and the nth element converges to zero.
If 0 < |r| <1, we consider the function f defined by f(x) = r*, where

x is any positive number, and show that lim r* = 0. Then from Theorem
x—+m

16.1.3 it will follow that lim "= 0 when 7 is any positive integer.
n——+o
To prove that lim r*=0 (0 < |r| < 1), we shall show that for any
T+

€ > 0 there exists a number N > 0 such that

[r**—0| <€ whenever x > N (4)
Statement (4) is equivalent to

[r|* < e whenever x > N
which is true if and only if

In|r[*<Ilne  whenever x > N
or, equivalently,

xIn|rl <lne  whenever x > N (5)
Because 0 < |r| < 1, In |r| < 0. Thus, (5) is equivalent to

In €

* T 7]

whenever x > N

Therefore, if we take N = In €/In |r|, we may conclude (4). Consequently,

lim r*=0, and so lim r*= 0 if n is any positive integer. Hence, by Defi-
Ir——+o n—+ow

nitions 16.1.2 and 16.1.4, {r"} is convergent and r* converges to zero.
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EXAMPLE 4: Determine if the
sequence {(—1)" + 1} is con-
vergent or divergent.

soLuTiON: The elements of this sequence are 0, 2, 0, 2, 0, 2, . . .,
(—1)»+1, ... . Because a,=0 if n is odd, and a, =2 if n is even, it
appears that the sequence is divergent. To prove this, let us assume that
the sequence is convergent and show that this assumption leads to a con-
tradiction. If the sequence has the limit L, then by Definition 16.1.2, for
every € > 0 there exists a number N > 0 such that |2, — L| < € for every
integer n > N. In particular, when € =3, there exists a number N > 0
such that

la,—L| <%  for every integern > N
or, equivalently,
—3<a,—L<3} for every integer n > N (6)
Because a, = 0 if n is odd and a, = 2 if n is even, it follows from (6) that
—3<—-L<3% and —3<2—-L<}

But if —L > —3%, then 2 — L > %; hence, 2 — L cannot be less than 1. So we
have a contradiction, and therefore the given sequence is divergent.

EXAMPLE 5: Determine if the
sequence

. T
n sin —

is convergent or divergent.

soLuTiION: We wish to determine if lim 7 sin(m/n) exists. Let f(x) =
n—+x

x sin(w/x) and investigate lim f(x). Because f(x) can be written as
I+

[sin(7/x)]/(1/x) and lim sin(w/x) =0 andlim (1/x) =0, we can apply
xr——+o Xr—+w
L'Hopital’s rule and obtain

w ™
—— Cos —
. . X X . T
lim f(x) = lim = lim wcos—=mw
-+ Ir——+® __1 I—+o X

F
Therefore, lim f(n) = when n is a positive integer. So the given se-

n—+w
quence is convergent and n sin(w/n) converges to .

16.1.5 Theorem

We have limit theorems for sequences, which are analogous to limit
theorems for functions given in Chapter 2. We state these theorems by
using the terminology of sequences. The proofs are omitted because they

are almost identical to the proofs of the corresponding theorems given
in Chapter 2.

If {a,} and {b,} are convergent sequences and c is a constant, then

(i) the constant sequence {c} has c as its limit;
(ii) lim ca,=c lim a,;
n—+oo n—+w
(iii) lim (a,=b,) = lim a, + lim b,;
n—+o n—+o n—+o



