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Preface

Moore’s law and the integrated circuit industry have led the electronics industry
to make technological advances that have transformed the society in many ways.
Wireless communications, the Internet, and the astonishing new modalities in medical
imaging have all been realized by the availability of the computational power inside
IC processors. At this pace, if Moore’s law continues to hold for the next couple
of decades, the computational power of integrated circuits will play a key role in
unveiling the secrets of the working mechanisms behind the living brain, it will also
be the enabler in the advances of health informatics and of the solutions to other
grand challenges singled out by the National Academy of Engineering. Maintaining
this pace, however, requires a constant search by the semiconductor industry for new
approaches to reduce the size of transistors. At the heart of Moore’s law is optical
lithography by which ICs are patterned, one layer at a time. By steadily reducing
the wavelength of light in optical lithography, the IC industry has kept pace with the
Moore’s law. In the past two decades, the wavelength used in optical lithography has
shrunk down to today’s standard of 193 nm. This strategy, however, has become less
certain as wavelengths shorter than 193 nm cannot be used without a major overhaul
of the lithographic process, since shorter wavelengths are absorbed by the optical
elements in lithography. While new lithography methods are under development,
such as extreme ultraviolet (EUV) at the wavelength of 13 nm, the semiconductor
industry is relying more on resolution enhancement techniques (RETs) that aim at
coaxing light into resolving IC features that are smaller than its wavelength. RETs
are becoming increasingly important since their implementation does not require
significant changes in fabrication infrastructure.

The laws of optical wave propagation determine that the smallest resolvable fea-
tures in optical lithography are proportional to the wavelength used and inversely
proportional to the numerical aperture of the underlying optical system. Reducing the
optical wavelength in optical lithography and exploring new methods to increase the
numerical aperture are the two ways in which the semiconductor industry has made
advances to keep up with the Moore’s law. A third approach is that of reducing the pro-
portionality constant k through resolution enhancement techniques. RETs manipulate
the amplitude, phase, and direction of light propagation impinging on the lithographic
mask to reduce the proportionality constant. In particular, optical proximity correction
(OPC) modifies the wavefront amplitude, off-axis illumination (OAI) modifies the
light wave direction of propagation, and phase-shifting masks manipulate the phase.
OPC methods add assisting subresolution features on the mask pattern to correct the
distortion of the optical projection systems. PSM methods modify both the amplitude
and phase of the mask patterns. OAI methods exploit various illumination configu-
rations to enhance the resolution. Used individually or in combination, RETs have
proven effective in subwavelength lithography.

The literature on RET methods has been growing rapidly in journals and con-
ference articles. Most of the methods used in RET exploit the rule-based principles
developed and refined by practicing lithographers. Several excellent books on opti-
cal lithography have appeared in print recently. Wong provides a tutorial reference

Xi
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focusing on RET technology in optical lithography systems [92]. Wong subsequently
extended this previous work and provided an integrated mathematical view of the
physics and numerical modeling of optical projection lithography [93]. Levinson
addressed and discussed an overall view of lithography, from the specific technical
details to economical costs [36]. Mack captured the fundamental principles of the in-
credibly fast-changing field of semiconductor microlithography from the underlying
scientific principles of optical lithography [49]. While the rule-based RET methods
will continue to provide a valuable tool set for mask design in optical lithography, the
new frontier for RETs will be on the development of tools and methods that capitalize
from the ever rapid increase of computational power available for the RET design.

This book first aims at providing an adequate summary of the rule-based RET
methodology as well as a basic understanding of optical lithography. It can thus serve
as a tutorial for those who are new to the field. Different from the above-mentioned
textbooks, this book is also the first to address the computational optimization ap-
proaches to RETs in optical lithography. Having vast computational resources at
hand, computational lithography exploits the rich mathematical theory and practice
of inverse problems, mathematical optimization, and computational imaging to de-
velop optimization-based resolution enhancement techniques for optical lithography.
The unique contribution of the book is thus a unified summary of the models and
the optimization methods used in computational lithography. In particular, this book
provides an in-depth and elaborate discussion on OPC, PSM, and OAI RET tools that
use model-based mathematical optimization in their design. The book starts with an
introduction of optical lithography systems, electric magnetic field principles, and
fundamentals of optimization. Based on this preliminary knowledge, this book de-
scribes different types of optimization algorithms to implement RETS in detail. Most
of the optimization algorithms developed in this book are based on the application of
the OPC, PSM, and OAI approaches and their combinations. In addition, mathemati-
cal derivations of all the optimization frameworks are presented as appendices at the
end of the book.

The Matlab’s m-files for all the RET methods described in the book are provided
at ftp://ftp.wiley.com/public/sci_tech_med/computational_lithography. All the opti-
mization tools are made available at ftp:/ftp.wiley.com/public/sci_tech_med/
computational lithography as Matlab’s m-files. Readers may run and investigate the
codes to understand the algorithms. Furthermore, these codes may be used by readers
for their research and development activities in their academic or industrial organi-
zations. The contents of this book are tailored for both entry-level and experienced
readers.

XU MA AND GONZALO R. ARCE

Department of Electrical and Computer
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1

Introduction

1.1 OPTICAL LITHOGRAPHY

Complex circuitries of modern microelectronic devices are created by building and
wiring millions of transistors together. At the heart of this technology is optical lithog-
raphy. Optical lithography technology is similar in concept to printing, which was
invented more than 3000 years ago [92]. In optical lithography systems, a mask is
used as the template, on which the target circuit patterns are carved. A light-sensitive
polymer (photoresist) coated on the semiconductor wafer is used as the recording
medium, on which the circuit patterns are projected. Light is used as the writing
material, which is transmitted through the mask, thus optically projecting the circuit
patterns from the mask to the wafer. The lithography steps are typically repeated
20-30 times to make up a circuit, where each underprinting pattern must be aligned
to the previously formed patterns. After a lengthy lithography process, a complex
integrated circuit (IC) structure is built from the interconnection of basic transistors.
Moore’s law, first addressed by Intel cofounder G. E. Moore in 1965, describes a
long-term trend in the history of computing hardware. Moore’s law predicted that the
critical dimension (CD) of the IC would shrink by 30% every 2 years. This trend has
continued for almost half a century and is not expected to stop for another decade
at least. As the dimension of IC reduces following Moore’s law, optical lithography
has become a critical driving force behind microelectronics technology. During the
past few decades, our contemporary society has been transformed by the dramatic
increases in electronic functionality and lithography technology. Two main factors
of optical lithography attract the attention of scientists and engineers. First, since
lithography is the cardinal part of the IC fabrication process, around 30% of the cost
of IC manufacturing is attributed to the lithography steps. Second, the advance and
ultimate performance of lithography determine further advances of the critical size
reduction in IC and thus transistor speed and silicon area. Both of the above aspects
drive optical lithography into one of the most challenging places in current IC man-
ufacturing technology. Current commercial optical lithography systems are able to
image features smaller than 100 nm (about one-thousandth the thickness of human
hair) of the IC pattern. As the dimension of features printed on the wafer continuously

Computational Lithography By Xu Ma and Gonzalo R. Arce
Copyright © 2010 John Wiley & Sons, Inc.
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INTRODUCTION

shrinks, the diffraction and interference effects of the light become very pronounced
resulting in distortion and blurring of the circuit patterns projected on the wafer. The
resolution limit of the optical lithography system is related to the wavelength of light
and the structure of the entire imaging system. Due to the resolution limits of optical
lithography systems, the electronics industry has relied on resolution enhancement
techniques (RETs) to compensate and minimize mask distortions as they are projected
onto semiconductor wafers. There are three RET techniques: optical proximity cor-
rection (OPC), phase-shifting masks (PSMs), and off-axis illumination (OAI). OPC
methods add assisting subresolution features on the mask pattern to correct the distor-
tion of the optical projection systems. PSM methods modify both the amplitude and
phase of the mask patterns. OAI methods exploit various illumination configurations
to enhance the resolution.

1.1.1 Optical Lithography and Integrated Circuits

Optical lithography is at the heart of integrated circuit manufacturing. Generally, three
stages are involved in the IC creation process: design, fabrication, and testing [92].
The flow chart of the IC creation process is illustrated in Fig. 1.1.

First, the IC products are defined and designed. In this stage, the abstract functional
units such as amplifiers, inverters, adders, flip-flops, and multiplexers are translated
into physically connected elements such as metal-oxide-silicon (MOS) transistors.
Subsequently, the design results of the physically connected elements are exploited
in the second stage of fabrication, where the desired circuit patterns are carved on
the masks, which are to be replicated onto the wafers through an optical lithography
process. After a series of development processes applied to the exposed wafer such as
etching, adding impurities, and so on, the ICs are packaged and tested for functional

|
: IC definit Layout synthesis e
Design S ANon Ll AYOULSYRINCSIS | g Verification Tape out 1
and design and routing
Mask Design data Reticle writing Inspection
making preparation and processing and repair ™ Send mask Bl
Fabrication
Wafer i . ¢
. Lithography [ Waferprocessing |- Metrology and L pobricated eireuit |—
processing inspection
Fail
Test — Functional testing Stress testing o
>
Pass Final product

Figure 1.1  The flow chart of the IC creation process.
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Figure 1.2 The scheme of a typical optical lithography system.

correctness and durability. During the entire IC creation process, optical lithography
plays a significant role and is mainly responsible for the miniaturization of IC sizes.

Similar to printing, optical lithography uses light to print circuit patterns carried by
the mask onto the wafer. The optical lithography system comprises four basic parts: an
illumination system, a mask, an exposure system, and a wafer [92]. A typical optical
lithography processing system is shown in Fig. 1.2. In Fig. 1.2, n is the diffraction
index of the medium surrounding the lens. O, is the maximum acceptable incident
angle of the light exposed onto the wafer. The numerical aperture of the optical
lithography system is defined as NA = n sin O,«. The partial coherence factor o = ;-:
is defined as the ratio between the size of the source image and that of the pupil.
Partial coherence factor measures the physical extent of the illumination. Larger
partial coherence factor represents larger illumination and lower degree of coherence
of the light source [92].

In the optical lithography process, the output pattern sought on the wafer is carved
on the mask. Light emitted from the illumination system is transmitted through the
mask, where the electric field is modulated by the transparent clear quartz areas and
opaque chrome areas on the mask. Subsequently, the modulated electric field propa-
gates through the exposure system and is finally projected onto the light-sensitive pho-
toresist layer coated on the wafer, which is then partially dissolved by the solvents. The
details of the photoresist processes and characteristics are discussed in Section 1.3.

1.1.2 Brief History of Optical Lithography Systems

Early optical lithography systems used contact lithography methods, where the mask
is pressed against the photoresist-coated wafer during the exposure [11]. Since neither



