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Preface

In the last decades, functional methods played an increasing role in the qualita-
tive theory of partial differential equations. The spectral methods and theory of Co-
semigroups of linear operators as well as Leray—Schauder degree theory, fixed point
theorems, and theory of maximal monotone nonlinear operators are now essential
functional tools for the treatment of linear and nonlinear boundary value problems
associated with partial differential equations.

An important step was the extension in the early seventies of the nonlinear dy-
namics of accretive (dissipative) type of the Hille—Yosida theory of Cy-semigroups
of linear continuous operators. The main achievement was that the Cauchy problem
associated with nonlinear m-accretive operators in Banach spaces is well posed and
the corresponding dynamic is expressed by the Peano exponential formula from
finite-dimensional theory. This fundamental result is the corner stone of the whole
existence theory of nonlinear infinite dynamics of dissipative type and its contri-
bution to the development of the modern theory of nonlinear partial differential
equations cannot be underestimated.

Previously, in mid-sixties, some spectacular properties of maximal monotone
operators and their close relationship with convex analysis and m-accretivity were
revealed. In fact, Minty’s discovery that in Hilbert spaces nonlinear maximal mono-
tone operators coincide with m-accretive operators was crucial for the development
of the theory. Although with respect to the middle and end of the seventies, little new
material on this subject has come to light, the field of applications grew up and still
remains in actuality. In the meantime, some excellent monographs were published
where these topics were treated exhaustively and with extensive bibliographical re-
ferences. Here, we confine ourselves to the presentation of basic results of the theory
of nonlinear operators of monotone type and the corresponding dynamics generated
in Banach spaces. These subjects were also treated in the author’s books Nonlinear
Semigroups and Differential Equations in Banach Spaces (Noordhoff, 1976) and
Analysis and Control of Nonlinear Infinite Dimensional Systems (Academic Press,
1993), but the present book is more oriented to applications. We refrain from an
exhaustive treatment or details that would divert us from the principal aim of this
book: the presentation of essential results of the theory and its illustration by sig-
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viii Preface

nificant problems of nonlinear partial differential equations. Our aim is to present
functional tools for the study of a large class of nonlinear problems and open to
the reader the way towards applications. This book can serve as a teaching text for
graduate students and it is self-contained. One assumes, however, basic knowledge
of real and functional analysis as well as of differential equations. The literature
on this argument is so vast and accessible in print that I have dispensed with de-
tailed references or bibliographical comments. I have confined myself to a selected
bibliography arranged at the end of each chapter.

The present book is based on a graduate course given by the author at the Univer-
sity of Iasi during the past twenty years as well as on one-semester graduate courses
at the University of Virginia in 2005 and the University of Trento in 2008.

In the preparation of the present book, I have received valuable help from my
colleagues, Ioan Vrabie and Ciitilin Lefter (Al.L. Cuza University of Iasi), Gabriela
Marinoschi (Institute of Mathematical Statistics and Applied Mathematics of the
Romanian Academy) and Luca Lorenzi from University of Parma, who read the
preliminary draft of the book and made numerous comments and suggestions which
have permitted me to improve the presentation and correct the errors. Elena Mocanu
from the Institute of Mathematics in lasi has done a great job in preparing and
processing this text for printing.

Iasi, September 2009 Viorel Barbu
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Chapter 1
Fundamental Functional Analysis

Abstract The aim of this chapter is to provide some standard basic results pertaining
to geometric properties of normed spaces, convex functions, Sobolev spaces, and
variational theory of linear elliptic boundary value problems. Most of these results,
which can be easily found in textbooks or monographs, are given without proof or
with a sketch of proof only.

1.1 Geometry of Banach Spaces

Throughout this section X is a real normed space and X* denotes its dual. The value
of a functional x* € X* at x € X is denoted by either (x*,x) or x*(x), as is convenient.
The norm of X is denoted by || - ||, and the norm of X* is denoted by | - ||. If there
is no danger of confusion we omit the asterisk from the notation || - ||« and denote
both the norms of X and X* by the symbol |- ||.

We use the symbol lim or — to indicate strong convergence in X and w-lim or
— for weak convergence in X. By w*-lim or — we indicate weak-star convergence
in X*. The space X* endowed with the weak-star topology is denoted by X}.

Define on X the mapping J : X — 2X":

J(x) = {x* € X*; (x*,x) = ||lxII> = |I=**}, Vx € X. 1.1

By the Hahn—Banach theorem we know that for every xo € X there is some xj € X*
such that (xg,x0) = ||xo|| and ||x3]| < 1.

Indeed, the linear functional f : Y — R defined by f(x) = al|xp|| for x = oo,
where Y = {axp; o € R}, has a linear continuous extension x5 € X* on X such
that | (x5, x)| < ||x|| Vx € X. Hence, (x3,X0) = ||xol| and ||xg|| <1 (in fact, ||x5|| = 1).
Clearly, xj||xo|| € J(xo0) and so J(xp) # @ for every xp € X.

The mapping J : X — X* is called the duality mapping of the space X. In general,
the duality mapping J is multivalued.

V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, 1
Springer Monographs in Mathematics, DOI 10.1007/978-1-4419-5542-5_1,
© Springer Science+Business Media, LLC 2010



2 | Fundamental Functional Analysis

The inverse mapping J~' : X* — X defined by J ! (x*) = {x € X; x* € J(x)} also
satisfies , )
T = {x e Xs x| = I, (", x) = [lxell® = [}

If the space X is reflexive (i.e., X = X**), then clearly J~!is just the duality mapping
of X* and so D(J™') = X*. As a matter of fact, reflexivity plays an important role
everywhere in the following and it should be recalled that a normed space is reflexive
if and only if its dual X* is reflexive (see, e.g., Yosida [16], p. 113).

It turns out that the properties of the duality mapping are closely related to the
nature of the spaces X and X*, more precisely to the convexity and smoothing pro-
perties of the closed balls in X and X*.

Recall that the space X is called strictly convex if the unity ball B of X is strictly
convex, that is the boundary dB contains no line segments.

The space X is said to be uniformly convex if for each € >0, 0 < € < 2, there is
6(€) > O such thatif ||x|| =1, ||y|| = 1, and ||x—y|| > &, then ||x+y|| <2(1—8(€)).

Obviously, every uniformly convex space X is strictly convex. Hilbert spaces
as well as the spaces L”(£2), 1 < p < oo, are uniformly convex spaces (see, e.g.,
Kothe [13]). Recall also that, by virtue of the Milman theorem (see, e.g., Yosida
[16], p. 127), every uniformly convex Banach space X is reflexive. Conversely, it
turns out that every reflexive Banach space X can be renormed such that X and X*
become strictly convex. More precisely, one has the following important result due
to Asplund [4].

Theorem 1.1. Let X be a reflexive Banach space with the norm || - ||. Then there is
an equivalent norm || - ||o on X such that X is strictly convex in this norm and X* is
strictly convex in the dual norm || - |3

Regarding the properties of the duality mapping associated with strictly or uni-
formly convex Banach spaces, we have the following.

Theorem 1.2. Let X be a Banach space. If the dual space X* is strictly convex,
then the duality mapping J : X — X* is single-valued and demicontinuous (i.e., it is
continuous from X to X}). If the space X* is uniformly convex, then J is uniformly
continuous on every bounded subset of X.

Proof. Clearly, for every x € X, J(x) is a closed convex subset of X*. Because J(x) C
dB, where B is the open ball of radius ||x|| and center 0, we infer that if X* is
strictly convex, then J(x) consists of a single point. Now, let {x,} C X be strongly
convergent to xy and let xj be any weak-star limit point of {J(x,)}. (Because the
unit ball of the dual space is w*-compact (Yosida [16], p. 137) such an xj exists.)
We have (x3,x0) = ||x0]|> > ||x3||? because the closed ball of radius ||xo|| in X* is
weak-star closed. Hence ||xo||?=||x||>— (x3,x0)-. In other words, x;=J(xp), and so

J(xn) — J(x0),
as claimed. (J

To prove the second part of the theorem, let us first establish the following lemma.
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Lemma 1.1. Ler X be a uniformly convex Banach space. If x, — x and
limsup,_,., [|xx|| < [|x||, then xn — x as n — oo.

Proof. One can assume of course that x # 0. By hypothesis, (x*,x,) — (x*,x) for
all x € X, and so, by the weak lower semicontinuity of the norm in X,

e < tim inf |lxa | < x|

Hence, lim,_.« [|x,|| = ||x||. Now, we set
o= y=
" bl [l

Clearly, y, — y as n — oo. Let us assume that y, / y and argue from this to a
contradiction. Indeed, in this case we have a subsequence yp,, [|lyn, — || > €, and
so there is & > 0 such that ||y,, +y|| <2(1 —J). Letting n;y — oo and using once
again the fact that the norm y — ||y|| is weakly lower semicontinuous, we infer that
ly]l <1— 4. The contradiction we have arrived at shows that the initial supposition
is false. OJ

Proof of Theorem 1.2 (continued). Assume now that X* is uniformly convex. We
suppose that there exist subsequences {un},{vn} in X such that ||u,||,||v.|| < M,
|t — va]| — O for n — oo, ||J(un) —J(vy)|| > € > O for all n, and argue from this
to a contradiction. We set x, = uy||un|| =", yn = va||va||~". Clearly, we may assume
without loss of generality that ||u,|| > a > 0 and that ||v,|| > a > 0 for all n. Then,
as easily seen,

[%n = ynll >0 asn— oo

and
(J(xa) + I () Xn) = [l + 1yl + (Xn = Yy (90)) 2 2 = |10 = yi-
Hence . 1
S G + 0 2 1= 5 [5a—all, Vo
Inasmuch as ||/(x)|| = ||[/(yn)|| = 1 and the space X* is uniformly convex, this

implies that lim,_,(J(x,;) —J(y,)) = 0. On the other hand, we have

I (un) = I (vn) = |lunl|(J (xn) = I (¥n)) + (ltnll = [1vall)}J (vn),
so that limy, e (J(4n) — J(vy,)) = O strongly in X*. O

Now, let us give some examples of duality mappings.

1. X = H is a Hilbert space identified with its own dual. Then J = I, the iden-
tity operator in H. If H is not identified with its dual H*, then the duality map-
ping J : H — H* is the canonical isomorphism A of H onto H*. For instance, if
H=H}(R)and H* = H~'(2) and Q is a bounded and open subset of RV, then
J = A is defined by
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(Au,v)z/gVu-Vvdx, Yu,v € H} (). (1.2)

In other words, J = A is the Laplace operator —A under Dirichlet homo-
geneous boundary conditions in 2 C RV, Here H} () is the Sobolev space
{ueL*(Q);Vu e L*(Q); u=0on dQ}. (See Section 1.3 below.)

2. X = LP(Q), where 1 < p < e and Q is a measurable subset of RV. Then, the
duality mapping of X is given by

J(u)(x) = [u(@)|"2u(@x)|ul,lp), ae.x€Q, Vuell(Q). (1.3)

Indeed, it is readily seen that if &), is the mapping defined by the right-hand side
of (1.3), we have

2/p p 2/q 1 1
@ d=/ Agx) = /d> d) . where —4—=1.
/ﬂ () udx (ﬂ|u| x) <Q| (1) 9dx where — -+~

Because the duality mapping J of LP(Q) is single-valued (because L is uni-
formly convex for p > 1) and @, (u) € J(u), we conclude that J = &), as claimed.
If X = L' (Q), then as we show later (Corollary 2.7)

J(u) = {v € L*(R); v(x) € signu(x) - [[ul| 1 (o), 2. x € 2}. (1.4)

3. Let X be the Sobolev space WOl 7(Q), where 1 < p < o and R is a bounded and
open subset of RY. (See Section 1.3 below.) Then,

J(u) Zax’ < " au) “ “ lp(_Q) (15)

In other words, J : Wol‘”(.Q) — W 49(Q), (1/p)+(1/q) = 1, is defined by

(Uw),v) = Z AES

We later show that the duality mapping J of the space X can be equivalently
defined as the subdifferential (Gateaux differential if X* is strictly convex) of the
function x — 1/2|x||%.

oxi

"2814 v
axa

u
dx|ul|> "’(n) e W, P(Q). (1.6)

1.2 Convex Functions and Subdifferentials

Here we briefly present the basic results pertaining to convex analysis in infinite-
dimensional spaces. For further results and complete treatment of the subject we
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refer the reader to Moreau [14], Rockafellar [15], Brezis [8], Barbu and Precupanu
[6] and Zilinescu [17].

Let X be a real Banach space with dual X*. A proper convex function on X is
a function @ : X — (—oo,+o0] = R that is not identically +oe and that satisfies the
inequality

P((1-2A)x+4y) < (1-2)9(x)+A0(y) (1.7)

forall x,y € X and all A € [0, 1].
The function @ : X — (—oo, +-o0] is said to be lower semicontinuous (1.s.c.) on X if

lim i;lf(p(u) > o(x), Vx e X,

or, equivalently, every level subset {x € X; @(x) < A} is closed.

The function @ : X —] — oo, +o9] is said to be weakly lower semicontinuous if it
is lower semicontinuous on the space X endowed with weak topology.

Because every level set of a convex function is convex and every closed convex
set is weakly closed (this is an immediate consequence of Mazur’s theorem, Yosida
[16], p. 109), we may therefore conclude that a proper convex function is lower
semicontinuous if and only if it is weakly lower semicontinuous.

Given a lower semicontinuous convex function @ : X — (—oo, +o0o] =R, @ # oo,
we use the following notations:

D(¢) = {x €X; @(x) <o} (the effective domain of @), (1.8)
Epi(@) = {(x,A) e X xR; @(x) <A} (the epigraph of @). (1.9)

It is readily seen that Epi(¢) is a closed convex subset of X x R, and as a matter
of fact its properties are closely related to those of the function ¢.

Now, let us briefly describe some elementary properties of lL.s.c., convex func-
tions.

Proposition 1.1. Let ¢ : X — R be a proper, Ls.c., and convex function. Then @ is
bounded from below by an affine function; that is there are xj € X* and B € R such
that

o(x) > (x5,x) + B, VxeX. (1.10)

Proof. Let E(¢) = Epi(@) and let xo € X and r € R be such that ¢(x9) > r. By
the classical separation theorem (see, e.g., Brezis [7]), there is a closed hyperplane
H = {(x,A) € X xR; —(x,x) + A = o} that separates E(¢) and (xo, 7). This means
that

—(x0,x)+A > a, Vxe E(@) and —(x5,x0)+r<c.

Hence, for A = ¢@(x), we have
—(x0.X) +@(x) > —(xg,%0) +r,  Vx€X,

which implies (1.10). O
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Proposition 1.2, Let ¢ : X — R be a proper, convex, and Ls.c. function. Then @ is
continuous on intD(@).

Proof. Let xg € intD(@). We prove that @ is continuous at xo. Without loss of gene-
rality, we assume that xo = 0 and that ¢(0) = 0. Because the set {x : ¢(x) > —¢} is
open it suffices to show that {x : ¢(x) < €} is a neighborhood of the origin. We set
C={xeX; o) <e}n{xeX; ¢(—x) < e}. Clearly, C is a closed balanced set
of X (i.e., ax € C for || < I and x € C). Moreover, C is absorbing; that is, for every
x € X there exists & > 0 such that ax € C (because the function t — @(tx) is convex
and finite in a neighborhood of the origin and therefore it is continuous). Because X
is a Banach space, the preceding properties of C imply that it is a neighborhood of
the origin, as claimed. [

The function @* : X* — R defined by

¢*(p) = sup{(p,x) — @(x); x € X} (L1
is called the conjugate of ¢@.

Proposition 1.3. Let ¢ : X — R be Ls.c., convex, and proper. Then ¢* is Ls.c., con-
vex, and proper on the space X*.

Proof. As supremum of a set of affine functions, ¢* is convex and l.s.c. Moreover,
by Proposition 1.2 we see that ¢* # co. (]

Proposition 1.4, Let @ : X — (—oo,+o0] be a weakly lower semicontinuous function
such that every level set {x € X; @(x) < A} is weakly compact. Then @ attains its
infimum on X. In particular, if X is reflexive and @ is an L.s.c. proper convex function
on X such that

lim @(x) = oo, (1.12)

[lxf| oo

then there exists xy € X such that ¢(xp) = inf{@(x); x € X }.

Proof. Letd =inf{¢(x); x€ X} and let {x,} C X such thatd < ¢(x,,) <d+(1/n).
Then {x,} is weakly compact in X and, therefore, there is {x,, } C {x,} such that
Xn, — X as ny — oo, Because @ is weakly semicontinuous, this implies that ¢(x) <d.
Hence ¢(x) =d, as desired. If X is reflexive, then formula (1.12) implies that {x € X;
@(x) < A} are weakly compact. As seen earlier, every convex and L.s.c. function is
weakly lower semicontinuous, therefore we can apply the first part. [

Given a function f from a Banach space X to R, the mapping f: X x X — R

defined by
. e fle+Ay) = f(x)
f(x,y)—lﬂr(; — xy€eX, (1.13)

(if it exists) is called the directional derivative of f at x in direction y.
The function f : X — R is said to be Gdteaux differentiable at x € X if there exists
Vf(x) € X* (the Gdteaux differential) such that
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flxy)=(Vf(x),y), VyeX. (1.14)

If the convergence in (1.13) is uniform in y on bounded subsets, then f is said to be
Fréchet differentiable and V f is called the Fréchet differential (derivative) of f.

Given an l.s.c., convex, proper function ¢ : X — R, the mapping d¢ : X — X*
defined by

20(x) = {x* € X*; p(x) < @(y)+ (x*,x—y), Vy € X} (1.15)

is called the subdifferential of ¢@.

In general, d¢ is a multivalued operator from X to X* not everywhere defined
and can be seen as a subset of X x X*.

An element x* € d@(x) (if any) is called a subgradient of ¢ in x. We denote as
usual by D(2¢) the set of all x € X for which d¢(x) # 0.

Let us pause briefly to give some simple examples.

1. @(x) = 1/2||x||>. Then, d@ = J (the duality mapping of the space X). Indeed, if
x* € J(x), then

(¢ x—) = 2= (&' 3) = 2 (P = 6], Vxex.
Hence x* € d@(x). Now, let x* € d¢(x); that is,
SUN =P < (& =30, Wyex. (1.16)
We take y = Ax, 0 < A < 1, in (1.16), getting
(5" 0) 2 5 P +A),
Hence, (x*,x) > ||x||2. If y = Ax, where A > 1, we get that (x*,x) < ||x|%. Hence,

(x*,x) = ||x||?> and ||x*|| > ||x]|. On the other hand, taking y = x4+ Au in (1.16),
where A > 0 and u is arbitrary in X, we get

. 1
A u) < 5 (e +Aul® = [1x[1%),
which yields

(") < [lx]] flu]]-

Hence, ||x*|| < ||x||. We have therefore proven that (x*,x) = ||x||? = ||x*||? as
claimed.

2. Let K be a closed convex subset of X. The function /x : X — R defined by

I (x) 0, ifxek, 1.17
X)=
E +oo, ifx¢K, (1.17)
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is called the indicator function of K, and its dual function H,
Hk(p) =sup{(p,u); u€ K},  VpeX’,

is called the support function of K. It is readily seen that D(dIx) =K, dIx(x) =0
for x € intK (if nonempty) and that

dlk(x) = Nx(x) = {x* € X*; (x*,x—u) >0, Yu € K}, Vxe K. (1.18)

For every x € dK (the boundary of K), Nk(x) is the normal cone at K in x.

3. Let ¢ be convex and Giteaux differentiable at x. Then d@(x) = V@(x). Indeed,
because ¢ is convex, we have

Px+A(y—x)) <(1-2)p(x) +10(y)
for all x,y € X and 0 < A < 1. Hence,

(p(x+l(y;x)) —(P(X) Z (P(y) _ (P(X),

and letting A tend to zero, we see that V@ (x) € d@(x). Now, let w be an arbitrary
element of d¢@(x). We have

Px)— () < (wx—y), VyeX.
Equivalently,

P(x+Ay) — o(x)
2

and this implies that (V(x) —w,y) > 0 for all y € X. Hence, w = V@(x).

> (w,y), VA >0, yeX,

By the definition of d ¢ it is easily seen that @(x) = inf{@(u); u € X} iff 0 € d@(x).
There is a close relationship between d¢ and d¢*. More precisely, we have the
following.

Proposition 1.5. Let X be a reflexive Banach space and let ¢ : X — R be an Ls.c.,
convex, proper function. Then the following conditions are equivalent.

@i x*edox),

(i) @(x)+e*(x*) = (x",x),

(iii) x € de*(x*).

In particular, d@* = (d@)~! and (¢*)* = ¢.
Proof. By definition of ¢*, we see that

Q" (x") > (x",x) — @(x), Vxe X,

with equality if and only if 0 € d(—(x*,x) +¢(x)). Hence, (i) and (ii) are equivalent.
Now, if (ii) holds, then x* is a minimum point for the function @*(p) — (x, p) and so



